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ANNOTATION 

This project presents a methodology for identifying the most effective 

candidates for hydraulic fracturing based on well performance forecasting. The 

methodology is developed with the use of massive data mining tools. 

Hydraulic fracturing provides a significant impact on the recovery of 

production, and therefore requires a huge investment due to operating costs. Applying 

the correct design to a non-efficient candidate ensures that this method of production 

intensification is not appropriate. Due to the fact that the selection of candidates is the 

first stage of the implementation of the hydraulic fracturing process, the use of the 

developed technology will significantly reduce the economic risks. 

The third stage of development of the Uzen field is characterized by the need 

for hydraulic fracturing to increase oil recovery. Every year, more than 100 hydraulic 

fracturing operations are carried out at this field. The huge volume of the current fund 

of wells complicates the process of selecting candidates. This problem requires a 

comprehensive approach to solving and determines the relevance of this study. 

To date, the selection of a candidate well for hydraulic fracturing is a 

significantly time-consuming process. The time factor is due to the requirement to 

consider a huge amount of information about the history of production, the geological 

and technical measures carried out for the specified well, the method of development 

of the field as a whole, etc. The developed technology not only provides accelerated 

analysis of significant amounts of information, but also represents the qualitative 

predictive power of data mining tools for geologically complex reservoirs. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 



 

 

АННОТАЦИЯ 

В данном проекте представлена методика выявления наиболее 

эффективных кандидатов для проведения гидравлического разрыва пласта   на 

основе прогнозирования производительности скважин. Методология 

разработана с применением инструментов интеллектуального анализа 

массивных данных. 

Гидроразрыв пласта обеспечивает значительное влияние на 

восстановление производства, и соответственно требует огромных 

капиталовложений, обусловленных операционными затратами. Применение 

правильного дизайна к не эффективному кандидату гарантирует 

нецелесообразность применения данной метода интенсификации добычи. В 

связи с тем, что подбор кандидатов  является первым этапом осуществления 

процесса ГРП, применение разработанной технологии, значительно снизит 

экономический риски.   

Третья стадия разработки месторождения Узень характеризуется 

необходимостью проведения ГРП для увеличения нефтеотдачи. Ежегодно на 

данном месторождении проводится более 100 операции ГРП. Огромный объем 

текущего фонда скважин усложняет процесс подбора кандидатов. Данная 

проблема требует комплексного подхода к решению и обуславливает 

актуальность данного исследования.  

На сегодняшний день подбор скважины-кандидата для проведения 

гидравлического разрыва пласта является значительно время затратным 

процессом. Фактор времени обусловлен требованием рассмотрения огромного 

массива информации об истории добычи, проведенных геолого-технических 

мероприятий указанной скважины, способа разработки месторождения в целом 

и др. Разработанная технология не только обеспечивает ускоренный анализ 

значительных объемов информации, но и представляет качественную 

прогностическую силу инструментов интеллектуального анализа данных для 

геологически сложных коллекторов. 

 

 

 

 

 

 

 



 

 

 

АҢДАТПА 

Бұл жобада  ұңғымалардың өнімін болжау барысында, қабат гидро 

жарылысын жүргізу үшін ең тиімді үміткер ұңғыманы анықтау әдістемесі 

ұсынылған. Жалпы әдістеме көптеген мәліметтер мен деректерді іздеу, талдау 

барысында жасалды . 

 Қабат гидро жарылысы өндірісті қалпына келтіруге айтарлықтай әсер 

етеді, және сәйкесінше операциялық шығындарға байланысты  үлкен көлемдегі 

инвестицияларды қажет етеді. Тиімді емес үміткерге дұрыс дизайнды қолдану, 

мұнай өндіруді арттыруға, осы әдісті  қолданудың қажет еместігіне кепілдік 

береді. Үміткер ұңғымаларды іріктеу, қабат гидро жарылысы процесін жүзеге 

асырудың бірінші кезеңі болғандықтан, дамыған технологияны қолдану 

экономикалық тәуекелдерді едәуір төмендетеді.  

Өзен кен орнын игерудің үшінші кезеңі, мұнай өндіруді арттыру үшін 

қабат гидро жарылысын жүргізу қажеттілігімен сипатталады. Жыл сайын Өзен 

кен орнында 100-ден астам қабат гидро жарылысы операциялары жүргізіледі. 

Қазіргі уақыттағы ұңғымалар қорының көптігі, ұңғыманы таңдау процесін 

қиындатады. Бұл мәселені шешу жан-жақты көзқарасты қажет етеді, сонымен 

қатар зерттеу жұмысының өзектілігі болып отыр.  

Бүгінгі таңда қабат гидро жарылысын жүргізу үшін, үміткер ұңғыманы 

таңдау айтарлықтай уақытты қажет ететін процесс болып табылады. Уақыт 

факторы көрсетілген ұңғыманың геологиялық – технологиялық жұмыстары 

жүргізілген өндіру тарихы, кен орнын тұтастай игеру әдісі, және тағы да басқа 

ақпараттың үлкен көлемін қарастыру талабымен анықталады. Дамыған 

технология - ақпараттың едәуір көлемін жедел талдауды қамтамасыз етіп қана 

қоймай, сонымен қатар геологиялық күрделі коллекторлар үшін, деректерді 

іздеу құралдарының жоғары сапалы болжамды түрін ұсынады. 
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INTRODUCTION 

 

A distinctive feature of the oil industry of Kazakhstan is the presence of a 

significant part of the developed fields at a late stage of development. Under 

conditions of depletion of reserves, these fields are characterized by a drop in 

production and high water cut. Therefore, the problem of improving efficiency 

requires special attention, since the question of economic profitability remains open. 

Currently, hydraulic fracturing is one of the most effective methods of intensifying 

production. And the correct selection of an effective candidate well, in turn, 

determines the success of hydraulic fracturing. 

The practical application of this work is of increased importance directly at the 

Uzen field, because it is not feasible to develop at this field without using methods 

and technologies to increase the intensification of oil production, namely hydraulic 

fracturing. In addition to the above, Uzen is the largest, multi-layer field, where more 

than a hundred hydraulic fracturing operations are carried out annually. Since the 

fund of existing wells is large, effective options are often overlooked when selecting 

a candidate for hydraulic fracturing, and the company does not receive the possible 

profit. The use of machine learning allows to significantly speed up the analysis of 

information. The scientific novelty of the study lies in the simultaneous use of 

modern approaches of machine learning and analysis of influencing parameters in the 

task of optimizing the process of selecting a well for conducting a hydraulic 

reservoir. As a result of the study, various machine learning algorithms were 

considered and described to identify the best candidate for hydraulic fracturing. The 

factors that mostly influence the process of well selection and their limitations for the 

use of machine learning methods are determined. 

The purpose of this research is to develop an algorithm for identifying the best 

hydraulic fracturing candidate well based on a set list of parameters. 

 

In accordance with the purpose of the study, the following tasks are set in the 

work: 

 Research and establishment of a list of criteria for the selection of candidate 

wells for the Uzen field; 

  Collecting data on wells where the hydraulic fracturing operation was 

performed; 

 Conducting a quality check of the data representing the subject of the study; 

 Development and application of various machine learning algorithms to 

identify the best candidate well; 

 Conducting a comparative analysis and selecting the most successful model; 

 Predicting production after hydraulic fracturing using the selected algorithm. 

 

The object of the research is a sample of current production wells, where the 

hydraulic fracturing process was carried out. The sample size of the study is one 

hundred wells. The sample was carried out among wells 13, 14 horizons. 



 

13 
 

MAIN PART 

1. THEORETICAL PART 

    1.1Tectonics and lithological-stratigraphic characteristics of the Uzen 

field 

The Uzen deposit is located in the steppe part of the Southern Mangyshlak and 

is administratively part of the Karakiyansky district of the Mangystau region of the 

Republic of Kazakhstan. 

Tectonically, the Uzen uplift is associated with the Zhetybai-Uzen tectonic 

stage, which complicates the northern side of the South Mangyshlak trough 

(Figure1). The region under consideration is part of the Turan Plate, which is part of 

the Central Eurasian young Epigercin platform. In the section here, three structural 

floors are distinguished, separated from each other by regional stratigraphic and 

angular inconsistencies. 

The Zhetybai-Uzen tectonic stage, being a second-order structural element, is 

confined to the northern side of the South Mangyshlak trough and stretches from 

north-west to south-east for 200 km with a stage width of about 40 km. From the 

north, the stage is bounded by a regional fault that complicates the southern wing of 

the Beke-Bashkuduk rampart, in the west it borders on the Segendyk depression and 

the Karagiinsky saddle, and in the east-with the Kokumbai stage. The stage is 

separated from the Zhazgurlinsky depression in the south by a deep fault of the 

sublatitudinal strike, reflected in the platform cover by a flexure-like inflection 

(Figure 1). 

Along the sedimentary cover within the Zhetybai-Uzen stage, three anticline 

lines are traced, oriented along the strike of the stage. From north to south, the most 

elevated Uzen-Karamandybas, then Zhetybai, and the most submerged Tenge-

Tasbulat anticline lines are distinguished. 

The largest local structure of the Zhetybai-Uzen stage is the Uzen uplift, which 

is a gentle anticlinal fold, the axis of which extends from east-southeast to west-

northwest. 
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Figure 1-Tectonic map of Mangyshlak: I-Mangyshlak dislocation system; II-

South Mangyshlak trough; IIA-Zhetybai-Uzen stage; IIB-Kokumbai tectonic 

Stage; 

According to the roof 13 of the productive horizon, which is stratigraphically 

related to the Kellovian stage of the Upper Jurassic, the size of the Uzen fold is 34.5 x 

10.0 km, and the elevation amplitude is about 300 m. The morphology of the fold is 

characterized by the asymmetry of the wings and periclinals. The northern wing is 

flat (the angles of incidence of rocks are 30), and the southern wing is steeper with 

angles of incidence of 5-60. The periclines of the structure are of different sizes: the 

eastern one is shorter than the western one and, accordingly, the fold axis dips in the 

eastern direction more sharply than in the western one. Within the more gentle 

northern wing of the fold and its western pericline, the sinking of rocks occurs 

unevenly with the formation of protruding areas. The shape of the fold and its spatial 

position coincide in different stratigraphic horizons of the Jurassic and Cretaceous. 

With depth, the amplitude of the rise and the angles of fall of the rocks on the wings 

increase, which is explained by the inherited nature of its development. 

The structure is complicated by six domes, most clearly traced in the lower 

productive horizons: the Main Vault, the Humurun, Northwestern and Aksai, 

Parsumurun and East Parsumurun domes. 

Deep drilling at the Uzen field uncovered a sedimentary complex with a 

thickness of 4500 m, in the structure of which rocks of Triassic, Jurassic, Cretaceous, 

Paleogene, Neogene and Quaternary ages take part. Within the Uzen structure, deep 
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drilling uncovered Lower Triassic deposits with a thickness of 698 to 2250 m, 

represented by the Indian and Olenekian tiers. 

Jurassic sediments, which are associated with the industrial oil and gas content 

of the Uzen field, transgressingly lie on the eroded surface of the Triassic rock 

complex. The Lower, middle and upper divisions of the Jurassic system are 

distinguished by the results of the study of fauna, flora and data of spore-pollen 

analysis. The Jurassic sediments are clearly divided into two complexes according to 

their lithological composition: the terrigenous complex of rocks of the Lower and 

Middle Jurassic and the carbonate complex of the Upper Jurassic. The 

undifferentiated deposits of the Lower Jurassic are represented by the interbedding of 

sandstones, siltstones, argellite-like black carbonaceous clays with organic plant 

remains and coal inclusions. 

Productive deposits of the 13-18 horizons of the Uzen deposit are represented 

by an uneven alternation of terrigenous rocks – sandstones, siltstones, clays and 

transitional lithological differences between them. Among them there are thin layers 

of limestones, marls, siderite, coals, and accumulations of charred plant detritus. In 

the calcareous differences of siltstones and clays, cores, fragments and impressions of 

bivalve shells are often found, sometimes small aggregations of pyrite. 

 

1.2 Structure of oil and gas deposits of the considered horizons 

 

A characteristic feature of the productive strata of the 13-18 horizons is a high 

heterogeneity, which is expressed in the complex nature of the distribution of 

reservoir layers over the area and section of the field and the significant variability of 

their filtration and reservoir properties. 

Along with a fairly confident correlation not only of the horizons, but also of 

individual bundles within the entire Uzen structure, there are significant differences 

in the number and volume of deposits installed on different domes, which is 

associated with the complex nature of the distribution of reservoir layers within the 

bundles and horizons. 

The porosity of productive reservoir rocks varies from 14.0% (lower limit) to 

41.7% (horizon 13). The tendency to decrease porosity from top to bottom along the 

section of the productive strata, despite some deviations due to the lithological 

heterogeneity of layers and bundles, is maintained quite clearly. The permeability of 

productive reservoirs of all bundles in the composition of 13-18 horizons varies in 

extremely wide ranges – from 0.001 to 7.301 mD (14 horizon). 
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Horizon 13 

Within the horizon, the thickness of which varies from 40 to 56 m, 12 sand-

siltstone layers are traced, united according to the accepted scheme of dividing the 

productive section into 5 bundles (Figure 2). Large reservoir thicknesses are not 

characteristic of this horizon and, in addition to the sand lens that can be traced 

through the listed blocks, they occur over the area of the deposit in small areas, 

without affecting the general idea of the structure of the horizon as the most 

heterogeneous in the Jurassic productive section of the Uzen deposit. 

 

Figure 2-Geological and statistical cross-section of the horizon 13 

 

The water-oil zones on each deposit of the thirteenth horizon, having a small 

width, are characterized by the development of reservoirs of small thickness. 

Therefore, a limited number of production wells were drilled in this zone, usually 

injection wells, and only a few wells were tested before the start of water injection to 

determine the nature of reservoir saturation. 
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Horizon 14 

The horizon is separated from the overlying horizon 13 by a well-maintained 

clay section in thickness and area. The thickness of the horizon varies from 60 m in 

the east to 80 m in the west of the structure. However, the decrease in thickness from 

west to east does not affect the structure of the horizon as a whole, within which 15 

sand-siltstone layers were identified as a result of detailed reservoir correlation 

(Figure 3). 

 

Figure 3-Geological and statistical cross-section of the horizon 14 

 

 

    1.3 A brief overview of the application of machine learning in the 

process of selecting candidates for hydraulic fracturing. 

 

Currently, the application areas of machine learning are expanding every day. 

This branch of artificial intelligence is widespread not only in industry, trade, various 

sectors of the economy, but also in everyday life. Machine learning is an extensive 

sub-division of artificial intelligence, the methodology of which is that the computer 

does not just use a pre-written algorithm, but learns how to solve a set problem. 

Machine learning quickly automates the process of creating an analytical model, and 

also allows computers to independently adapt to new scenarios. 
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The oil and gas industry is the largest source for big data, therefore, the use of 

machine learning algorithms in this area, first of all, optimizes the economic 

component of the company. In the oil industry, the range of algorithms used is wide: 

the choice of the field development option, the calculation of reserves, the calculation 

of the expected flow rate after the intensification of production, the assessment of 

filtration and reservoir properties, and more. The hydraulic fracturing process is not 

an exception to the above list. 

Hydraulic fracturing is one of the most common and effective methods for 

increasing oil production of reservoirs. The increase in hydraulic fracturing 

operations in recent years has led to the formation of huge amounts of data. As a 

result, the ability to implement machine learning in the hydraulic fracturing process 

in order to improve results has also increased. The process of selecting a candidate 

well is the first and result-determining step in the implementation of the hydraulic 

fracturing process. The use of artificial intelligence algorithms in selecting the 

desired target well reveals the potential of research, revealing the relationship 

between the impact factors. In general, there is no traditional, generally accepted 

methodology for applying machine learning to the process of selecting wells for 

hydraulic fracturing. The development of a methodology for the rapid selection of 

wells for hydraulic fracturing based on machine learning is presented in the paper 

(Akhmetov A., 2018). The authors developed a machine learning model based on 

neural networks to estimate the average annual level of oil production after hydraulic 

fracturing treatment. Based on the selected model, forecasts are made for other wells 

that are potential for hydraulic fracturing applications. There is a growing body of 

research around the world focused on applying big data analysis to the problem of 

hydraulic fracturing optimization. The use of advanced techniques, such as artificial 

neural networks, significantly reduces the uncertainty in the selection of candidate 

wells (Aryanto Agus, 2017). Non-linearity is the main advantage of neural networks, 

as a nonlinear relationship between the predicted and actual process parameters is 

established. In the above work, the relationship between the input and output data set 

is determined to reveal the optimal distribution of the membership function, which 

allows for more efficient prediction of candidate selection and fracture optimization. 

The paper (Alimkhanov R., 2014) presents a methodology for selecting wells for 

hydraulic fracturing operations using Data Mining tools. The impact of various 

geological and field conditions on the efficiency of hydraulic treatment of the 

reservoir was also assessed. Classification models have been developed to divide 

potential candidates into groups: effective and ineffective. In addition to the above, 

the authors have proposed regression models for predicting the flow rate and water 

cut after hydraulic fracturing. A recent study (Vanina A. S., 2020), containing a 

sample of 5,000 wells, presents a detailed process for optimizing hydraulic fracturing 

design. The input parameters are divided into reservoir, well, and design parameters 

of the hydraulic fracturing design. The estimated parameter is the three-month 

cumulative oil production. As a machine learning tool, several boosting algorithms 

are used and compared. Testing of the developed methodology for pilot wells shows 
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the effectiveness of the developed approach. Traditional methods of well selection for 

hydraulic fracturing do not take into account all the non-linearity of the process. The 

results of research and the experience of recent years have shown us the possibility of 

implementing machine learning in the process of analyzing and predicting hydraulic 

fracturing operations. 

1.4 Parameters and their influence on candidate-well selection for hydraulic 

fracturing. 

The selection of a suitable candidate for hydraulic fracturing determines the 

ultimate success of the entire process. This process is the first stage in hydraulic 

fracturing operations (Figure 4). The use of machine learning to identify the impact 

of a number of parameters on the volume of production after a fracking operation is a 

powerful tool, as it leads to an integrated approach.
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Figure 4- Block diagram showing the stages of hydraulic fracturing operations 

 

In practice, a table with a list of parameters and their boundary values is used 

to select a candidate. For example, the water content of the candidate well should not 

exceed 50%, or the effective oil-saturated thickness should not be less than 0.8 m 

(Салимов О.В., 2017). Using the threshold methodology, a large number of effective 

candidates are overlooked, due to the fact that they are not suitable only for a certain 

parameter. The presence of errors in the methodology of threshold values: 1-a well 

that does not meet the criteria, but the hydraulic fracturing on it will be effective; 2-a 

well that meets the criteria, but the hydraulic fracturing on it will be ineffective, 

because the use of other approaches in the selection of candidate wells (Салимов 

О.В., 2017). The criteria that are taken into account when selecting candidates for 

hydraulic fracturing in this study will be discussed below. In the future, the 
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relationship between the influences of the selected criteria on the flow rate after 

hydraulic fracturing is revealed. This procedure is applied to wells 13, 14 horizons of 

the Uzen field. 

 

Parameters that affect the selection of a candidate well: 

 

Net Pay Thickness. According to Darcy's law, as the effective thickness of the 

reservoir increases, the oil flow rate increases proportionally. Because the main 

purpose of production intensification is to increase profits by increasing production 

volumes, the economy is the driving force in deciding which well is most suitable for 

carrying out the inflow intensification. Since the hydraulic formation operation is 

relatively resource-intensive, the best candidate wells must have significant volumes 

of hydrocarbons. Following this point of view, large values of the oil-saturated 

thickness are preferred. 

 

Reservoir permeability. This parameter refers to the petrophysical properties of 

the intervals. In the field under consideration, wells with moderate and relatively high 

permeability have good production indicators, therefore, do not belong to potential 

candidates. When conducting hydraulic fracturing, as a rule, wells with low 

permeability are considered as an effective candidate. 

 

Reservoir pressure. Effective candidates for hydraulic fracturing are wells with 

a smaller drop in reservoir pressure relative to the initial one. Low reservoir pressure 

at wells during hydraulic fracturing is the reason for the failure to achieve the planned 

flow rate. In this study, the ratio of the current reservoir pressure to the initial 

pressure is taken as a parameter that estimates the reservoir pressure. This is due to 

the fact that the sample was made from two horizons with different initial reservoir 

pressures. For non-perforated objects, you must specify the primary reservoir 

pressure or the results in neighboring wells. 

 

Water Cut. A distinctive feature of the Uzen deposit is the high degree of water 

cut of the layers. In this regard, during the hydraulic fracturing operation, candidates 

with critical water cut values are not neglected. However, lower values of the degree 

of water cut are preferable, since the share of oil in the extracted liquid will be higher. 

Oil rate. Wells with a low oil flow rate prior to fracking are also suitable 

candidates. Because as a result of the intensification under consideration, the oil flow 

rate increases, therefore, the value of the productivity index increases, showing the 

potential and ability of the well to produce products. 

 Distance to the nearest production well. When conducting hydraulic 

fracturing in a field drilled on a dense grid, working oil wells can interact. The reason 

is the interference of wells, which leads to the economic inexpediency of the 
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hydraulic fracturing process. Wells with long distances to neighboring wells are 

preferred. The minimum and maximum distances to the producing well are 94 and 

881m, respectively. 

Distance to the nearest injection well. The breakthrough of the injected water 

is also the reason for the failure to achieve the predicted flow rate. The optimal 

fracture length ensures the efficiency of the hydraulic fracturing process, but it is 

necessary to take into account the radius of the well drainage zone and the proximity 

of the injection wells. According to the data sample, the minimum and maximum 

distance to the nearest injection well is 152 and 1194 m, respectively. 

New planned  fracturing interval. The considered horizons of the Uzen 

deposit are characterized by an inhomogeneous structure of productive layers. Oil-

saturated layers are an alternation of permeable sandy and impermeable clay layers, 

which indicates a high degree of dissection of the layers. Hydraulic fracturing under 

these conditions increases oil recovery, due to the involvement in the development of 

oil reserves in heterogeneous and dismembered reservoirs. The possibility of 

additional perforation is highlighted as a parameter taken into account when selecting 

a candidate for hydraulic fracturing. 

The success of hydraulic fracturing is primarily determined by the selection of 

a suitable candidate well. The most important parameters for selecting a candidate for 

hydraulic fracturing, considered in this study, are presented in table 1. As a source of 

information, various sources were used to create a database of potential candidates 

for the specified parameters. To determine the distance to the nearest production and 

injection wells, we have mastered the work on the NGT Smart computer program. 

The information system "Geographically distributed data bank" (TBD) is a resource 

of information on the remaining criteria. 

 

 

 

 

 

 

 

 



 

22 
 

Table 1- Criteria affecting the selection of candidates for hydraulic 

fracturing 

Parameter Units Effect 

Source of 

information 

Additional 

perforation Qualitative Positive 

TBD-Perforation 

intervals 

Net Pay Thickness [m] Positive 

TBD-Perforation 

intervals 

Reservoir pressure [atm/atm] Positive TBD-Well test 

Permeability [mD] Negative TBD-Well test 

Oil rate [t/day] Negative 

TBD-Operational 

parameters 

Water Cut [%] Negative 

TBD-Operational 

parameters 

Distance to IW [m] Positive NGT Smart 

Distance to PW [m] Positive NGT Smart 

 

The main purpose of the TBD is to create a single field of geological, 

geophysical and field information for decision-making. The TBD system operates in 

real time. For example, the indications of water cut and oil flow rate before hydraulic 

fracturing are determined from operational data on liquid production. The values of 

permeability and reservoir pressure are contained in hydrodynamic studies (the 

method of steady-state sampling, buildup, etc.). Data on additional perforation and 

effective intervals are determined from the reporting documentation. 

 

1.5 Summary of Chapter 1 

 

This chapter discusses the theoretical aspects of this study. Uzen is one of the 

largest deposits on the territory of our country. The geological structure and 

heterogeneity of the reservoirs, the high water content of the reservoirs cause a 

complicated process of oil production. The use of various methods of inflow 

intensification in this field is not just a frequent practice, but a necessity. The huge 

fund of existing wells and various reasons for not achieving the planned indicators 

during hydraulic fracturing determine the relevance of research in this area. 

The current economic situation dictates new realities and conditions for oil 

production. The use of machine learning in the oil industry is one of the priorities, as 

it guarantees an increase in the productivity and efficiency of the technologies used. 
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The introduction of machine learning algorithms in the process of selecting wells for 

hydraulic fracturing operations provides accelerated analysis of a large amount of 

data and the ability to achieve a high level of economic efficiency of the hydraulic 

fracturing process. 

The selection of candidates requires the integration of various sectors, such as 

geology, reservoir engineering, petrophysics, manufacturing, geomechanics, and 

stimulation engineering. According to the practice of hydraulic fracturing, there is a 

contradiction in the methodology used for selecting candidate wells. Each method 

requires a careful approach, characterized by its own disadvantages and advantages. 

The Uzen deposits are multi– layered and heterogeneous, so 13, 14 horizons were 

chosen as the object of research. Because the qualitative results are the result of a 

detailed approach. 

The first chapter also considers the significance of the parameters that are taken 

into account in this study as factors affecting the flow rate after hydraulic fracturing. 

The selection of an effective candidate for hydraulic fracturing ensures that the 

economic aspects of the operation are met and that it is economically viable. 
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2. TECHNICAL DESCRIPTION OF THE PROJECT 

 

The presented research is aimed at identifying an effective candidate for 

conducting the hydraulic fracturing process using machine learning. 

The step-by-step scheme of the study is shown in Figure 5. This chapter will 

cover the stages of data collection, data analysis, and algorithm modeling. 
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Figure 5- Flowchart of research 

 

The code for the developed models is written in the Jupyter notebook 

interactive computing environment based on Python. Python is one of the most 

common high-level object-oriented programming languages. Its popularity is due to 

its simple syntax, portability, and the most commonly used functions from the 

standard library. Classical numerical solution algorithms are implemented in 

packages used in scientific computing-numpy, scipy, matplotlib, and sympy. The 

possibilities of implementing two-dimensional and three-dimensional data are 

implemented using the matplotlib package. The basis of the NumPy and SciPy 

packages is numerical calculations, but also symbolic calculations. In the present 

study, the Scikit-learn package is the most powerful and widely used, as it provides a 

variety of algorithms. With the use of this package, preprocessing of data, changing 

the dimensions of variables, and cluster analysis were carried out. 
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2.1 Data: collection, preparation, quality check, analysis 

 

Data collection. One of the most important tasks of this research is the 

formation of a database of qualitative data for machine learning algorithms. The use 

of low-quality data leads to problems associated with data preprocessing and 

overestimated performance error. 

The generated database is presented in the form of processed and structured 

information in tabular form. The objects are the rows of this table - the wells on 

which hydraulic fracturing was carried out. And the columns represent the parameters 

under consideration. Therefore, the average oil flow rate after the application of 

geological and technical measures is a dependent variable on predictors (influencing 

parameters). The number of rows corresponds to the number of wells (100), the 

number of columns-10.   

 

Figure 6-Two-dimensional data table-DataFrame (Jupyter notebook) 

 

Data preparation. The data preparation process is necessary for the subsequent 

analysis of the information using machine learning algorithms. Data cleaning, data 

cleansing, or scrubbing is all about data mining - the stage in which the process of 

identifying and removing inconsistencies in data is carried out. Incorrect conclusions, 

inadequate statistics are the result of incorrect, duplicate and lost information. In this 

regard, data cleaning is an integral procedure when using machine learning 

algorithms.  

Data preparation is the process of converting the source data into a form 

suitable for modeling. Machine learning algorithms require the input data to be 

numbers. Therefore, if the data contains values that are not numbers, you will need to 

change this data to numbers. 
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Figure 7- Output of the type of values in the data set. 

 

Data quality. Using info () , it is observed that the data type in the sample in 

question is integer or float. No null values were found in the data set either. Using the 

describe () method, you can get a statistical analysis of the data set. The statistical 

summary of the input variables shows that each variable has a very different scale 

(Figure 8). 

 

Figure 8-Output of the statistical summary of the dataset 

 

A histogram is created for each input variable. The output graphs confirm a 

different range for each input variable and show that the variables have different 

scales. 
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Figure 9- Histogram plots of input variables 

 

Data quality is a multidimensional thing. The data must be simultaneously 

accessible, accurate, coherent, complete, consistent, defined, and relevant. A larger 

amount of the time resource of this study is based on the collection and preparation of 

data, because high – quality data is the key to a high-quality result. 

Data analysis. Data analysis is a prior step before applying algorithms. The 

data analysis carried out in this study is divided into two sections. First of all, we will 

study the sample of wells from the point of view of bias and objectivity. The purpose 

of this analysis is to prove that the author was objective when making the selection. 

This means that the sampling of wells should have both positive and negative results 

after hydraulic fracturing. 

Let's analyze the statistics of oil flow rate after hydraulic fracturing, because 

this variable is the target. A numerical explanation of the figure below is provided in 

Table 2. 
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Figure 10- Sample box plot: flow rate after hydraulic fracturing 

 

A span chart is a tool for representing numerical data in terms of quartiles. The 

"whiskers" represent straight lines coming out of the box, they are necessary to 

visualize the degree of spread (variance) beyond the upper and lower quartiles. This 

descriptive statistics tool allows you to quickly and efficiently explore data sets. 

Figure 10 shows a diagram of the oil flow rate after the intensification of the 

sample under consideration. According to the figure, the average oil flow rate is 11.4 

t/day, the minimum – 3.5 t/day, the maximum-19.8 t / day. 

Table 2- Sample statistics: flow rate after hydraulic fracturing 

 

Statistics Value, [t/d] 

mean       11,403 

std        4,148667 

min        3,5 

25% 8,175 

50% 11,25 

75% 14,625 

max        19,8 

Figure 11 shows the sample density graph, which is a graphical tool for 

distributing data over a certain time interval. This type of visualization is a 

modification of the histogram, where nuclear smoothing is used to display the values, 
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which allows displaying a smoother distribution. According to the analysis, it 

becomes clear that in the data sample under consideration, most wells produce an oil 

inflow after hydraulic fracturing from 9 to 12 tons/day. The green line corresponds to 

the average oil flow rate, and the red line corresponds to the median (Figure 11). 

 

Figure 11- Sample density plot: flow rate after hydraulic fracturing 

 

For the next stage of data sampling analysis, it is necessary to divide the wells 

into classes based on water cut. The classification is carried out according to the 

following limit values of water cut classes (Figure 12): 

 Low-watered wells (0-40%) -21; 

 Medium watered wells (40-80%) -50; 

 High-watered wells (80-100%) -29. 

 

Figure 12- Classification of wells by water cut parameter 
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As mentioned earlier, at the Uzen field, the problem of water cut is the most 

common during hydraulic fracturing. The figure below shows the statistics of oil flow 

rate after intensification relative to the water cut groups. 

 

Figure 13- Box sample diagram: oil flow rate by water cut class 

It should be noted that low-water wells have the highest oil inflow, which is 

expected. However, high-watered wells produce an average of 12 t / day compared to 

10 t/day of medium-watered wells. This phenomenon is explained by the size of the 

sample by water cut classes and the possibility of carrying out repair and insulation 

work before hydraulic fracturing. 

In order to argue for the objectivity of the sample of wells, it is necessary to 

conduct a comparative analysis with wells that have been fractured during the last 

three years (2020/19/18).  

Table 3- Statistics of flow rate after HF: comparative analysis 

Statistics mean std     min     25% 50% 75% max count 

Sample, [t/d] 11.403 4.1487 3.5 8.175 11.25 14.625 19.8 100 

2020, [t/d] 10.7 4.966 0.7 7.3 10.7 14.85 25.7 110 

2019, [t/d] 11.609 5.4797 0.7 7.575 11.35 14.875 29.6 122 

2018, [t/d] 11.059 6.454 0.1 6.9 10.7 14.6 39.4 145 
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Table 3 presents a statistical analysis of the oil flow rate after hydraulic 

fracturing over the past three years at the Uzen field. 

 

 

 

Figure 14- Box plot (2020/19/18): flow rate after hydraulic fracturing 

Based on the comparative analysis, it can be argued that the average oil flow 

rate after hydraulic fracturing is in a small range of changes in the flow rate (10.7-

11.6 t / day) for all hydraulic fracturing operations in a time period of three years. It 

should also be noted that there are significant deviations in the maximum flow rate 
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for 2018. When studying the graph of the well flow rate density for the years under 

consideration, it becomes clear that the most frequent increase is also as close as 

possible to the sample produced (Appendix B).  

Table 4- Distribution of wells by water content groups: comparative analysis 

Group 
Low 

watered 

Medium-

watered 

Highly-

watered 

Sample 21 50 29 

2020 11 67 32 

2019 7 78 39 

2018 10 85 50 

According to the above table, the sample corresponds to the hydraulic 

fracturing carried out over the past three years, according to the numerical 

distribution relative to the water cut classes. The conducted data analysis allows us to 

state that the data sample of 100 wells is absolutely random and objective in relation 

to the majority of hydraulic fracturing operations conducted in 2020/19/18 at the 

Uzen field. 

Previously, the analysis of the target variable was carried out, then the data 

analysis will be presented, based on the parameters that affect the oil flow rate after 

hydraulic fracturing. Data science looks at the relationships between two or more 

variables in a particular data set. The purpose of correlation analysis is to determine 

the degree of connection between the random variables under consideration. This 

type of analysis allows measuring the degree of connectivity of two or more 

phenomena, to detect unknown causes of connections, etc. A relationship is called a 

correlation if each value of a factor attribute corresponds to a well-defined non-

random value of the resulting attribute. The linear correlation coefficient is a tool that 

evaluates the degree of closeness of this relationship. 

In the area of machine learning, the correlation of independent variables is 

called multicollinearity. This phenomenon is undesirable for the data set, as it makes 

it difficult to analyze and evaluate the final result. The retraining of the model is a 

consequence of the manifestation of the multicollinear system. In addition, redundant 

coefficients increase the complexity of the machine learning model, hence the 

training time increases. Also, when using a multiple regression model, the 

interpretation of the parameters becomes more complicated - the regression 

parameters lose their meaning. The final result is large standard errors, and the 

regression model will not be applicable for forecasting. 

The correlation matrix is used as a tool for estimating the degree of correlation 

of parameters (Figure 15). 
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Figure 15- Correlation matrix of parameters 

 

According to the above figure, each cell of the correlation matrix is a 

"correlation coefficient" between two variables corresponding to the row and column 

of the cell. The correlation coefficient for each pair of parameters is shown in Figure 

16. 

 

Figure 16- Output of the numerical expression of the correlation matrix 
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The Pearson coefficient is a coefficient defined as the covariance between two 

variables divided by the product of the standard deviations of these two variables. 

 
       

        

     
 (1) 

 

The value       lies in the range [-1 ; 1]. Values close to +1 indicate a strong 

positive relationship between X and Y, while values close to -1 indicate a strong 

negative relationship between X and Y. Values close to zero indicate that there is no 

relationship between X and Y. Each cell in the matrix above is also represented by 

shades of color. Here, red shades of color indicate a negative correlation, while blue 

shades correspond to a positive correlation. According to the above analysis, no 

critically correlated data were found. Therefore, for the further application of 

machine learning algorithms, the previously considered list of influencing parameters 

is approved. 

2.2 Development of models for predicting the flow rate after hydraulic 

fracturing 

The development of a model for predicting the flow rate after a hydraulic 

fracturing operation is based on a machine learning algorithm. In this study, the code 

contains an algorithm for finding solutions independently through the integrated use 

of statistical data. Further, certain patterns are identified, on the basis of which the 

flow rate after hydraulic fracturing is predicted for potential candidates. 

The main problem of machine learning is that today there is no single flexible 

algorithm applicable to any data sample, regardless of the optimization industry. In 

addition to the above, it should be noted that different types of algorithms have a 

different degree of efficiency of the result. For example, you can't say that decision 

trees work better than neural networks in all cases, and vice versa. The structure and 

size of the data set largely determine the success of the type of algorithm used. For 

this reason, during the research work, a number of algorithms were used to identify 

the most efficient and suitable for the existing data sample. 

Machine learning algorithms can be described as learning the objective 

function f  that best matches the input variables X and the output variable Y: Y = f(X). 

The most common task in machine learning is to predict Y values for new X values. 

This is called predictive modeling, which aims to make the most accurate prediction 

possible. Next, we will consider the algorithms used in this study to predict the oil 

flow rate after hydraulic fracturing. 

 



 

35 
 

 

2.2.1 Regression Algorithms: Linear regression 

 

The most basic and fundamental algorithm used to identify the relationship 

between a dependent variable and one or more independent variables is linear 

regression. This algorithm is focused on finding the "best match line". The best match 

line is found by minimizing the squared distances between the points and the best 

match line.  

 

Figure 17- One-dimensional linear regression model [7] 

 

 

In this study, multiple regression is considered, because the predicted flow rate 

after hydraulic fracturing depends on several independent variables (factors discussed 

in the first chapter). The equation below represents a linear regression model: 

 

                       (2) 

 

where, 

                               

                     

                                             

 



 

36 
 

2.2.2 Regularization Algorithms: Least Absolute Shrinkage and Selection 

Operator 

 

Linear regression is unstable if it shows an overestimated degree of 

dependence on training data, which usually leads to the phenomenon of overfitting. 

The use of the regularization method avoids the consequences of an unstable model. 

Regularization is based on the imposition of additional constraints on the initial 

parameters, which prevent excessive complexity of the model. The LASSO 

regression model uses coefficient compression, meaning that the data approaches the 

mean value. 

The introduction of an additional regularization term in the optimization 

functional of the model determines the effectiveness of the LASSO regression 

method. The following formula expresses the condition for minimizing the squared 

error in parameter estimation: 

 
                

 
       

 

   

 
(3) 

 

where, 

 - regularization parameter that has the meaning of a penalty for complexity. 

In this case, a certain compromise is reached between the regression error and 

the dimension of the used feature space, expressed by the sum of the absolute values 

of the coefficients     . During minimization, some coefficients become equal to 

zero, which, in fact, determines the selection of informative features. This 

compression process allows you to get the most stable and accurate estimates of the 

true parameters. In LASSO regression, instead of taking the square of each 

coefficient, their absolute values are taken. 

 

2.2.3 Regularization Algorithms: Ridge regression 

 

Ridge regression, like LASSO regression, is a modification of linear 

regression. The similarity of Lasso regression to ridge regression is the application of 

the compression process in both cases. Both algorithms are used with a high degree 

of efficiency to sample data with a large number of influencing features, the 

correlation of which can lead to a multicollinear system. However, the main 

difference in these types of regression is that in Ridge regression, none of the 

coefficients becomes zero, which can be observed in LASSO regression. Let’s look at 

the cost function of Ridge: 
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(4) 

 

Using Ridge regression avoids the effect of over fitting with lower coefficients. 

Lambda ( ) is a constant, hence it has the same scaling effect on all coefficients. 

Regression Ridge has a detailed approach, as it allows you to make important 

features more pronounced and reduce the influence of factors that have the least 

effect. This is because when squaring a larger number, the result is an even larger 

number. On the contrary, if you select a low value (for example, 0.01), the result will 

decrease significantly. But when squaring numbers less than one, and then 

multiplying it by 0.01, we get an even smaller result. Thus, this algorithm works 

perfectly even with a high degree of correlation of influencing factors. Since the 

influence of all factors is taken into account, but the coefficients are distributed 

among the factors depending on the correlation. 

 

2.2.4 Polynomial regression  

 

The polynomial regression is a special case of the previously considered linear 

regression. The polynomial regression algorithm models the relationship between the 

independent variable (x) and the dependent variable (y) as an n-th degree polynomial. 

The main equation of the polynomial regression is given below: 

               
        

  (5) 

 

Polynomial regression is perfectly applicable to a data set that is characterized 

by non-linearity. Because using a linear model to the above data set will increase the 

loss function, increase the error rate, and therefore decrease the accuracy of the result. 

However, the presence of one or two outliers has a significant impact on the results of 

the power analysis. This means that the polynomial regression is very sensitive to 

outliers. This type of regression is often used in mathematical statistics when 

modeling the trend components of time series. 

 

2.2.5 Random Forest Regression  

 

The Random Forest algorithm is one of the most common algorithms used in 

machine learning. This is due to its versatility: the algorithm is applicable in solving 

problems of classification, regression, anomaly search, clustering, etc. A random 

forest is a collection of a certain number of decision trees. This means that trees 

constructed "randomly" make up a Random forest. Each tree is formed from a 
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selection of rows, and a different selection of objects is selected at each node for 

partitioning. Each of the "random" trees models its own individual prediction. 

Further, the available forecasts are averaged to obtain a single, more accurate result. 

The figure below shows the structure of the Random Forest algorithm. 

 

 

Figure 18- Structure of a Random Forest Regression [8] 

 

2.2.6 Ensemble method 

 

To date, the methods of ensembling are powerful tools that are most often used 

in machine learning. The popularity and high degree of effectiveness is explained by 

the assumption that combining several models together leads to the creation of a 

much more powerful model. Getting the best prediction performance is the main goal 

of any machine learning algorithm. Thus, an ensemble of methods improves the 

prediction result by using several training algorithms. The flexibility of ensemble 

methods is provided by a larger number of parameters than individual models of 

algorithms. It should also be noted that with the ensemble method, it is important to 

synthesize distinctive models, because if similar algorithms are combined, the error 

increases. 

It should be noted that in the case of ensembling, the numeric input variables 

change the scale to the standard range. When using the standardization function, each 

source variable is scaled individually, subtracting the mean (called centering) and 

dividing by the standard deviation to shift the distribution to produce a zero mean and 

a unit standard deviation. 

In this study, eight factors influence the forecast flow rate after hydraulic 

fracturing. Including more features does not always improve the performance of the 

algorithm. The principal components method solves this problem by reducing the 
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dimension of the feature data space. The data set in question, like any data sample, 

contains noise. The phenomenon of model over fitting is a consequence of the 

presence of data noise. Using the principal components method avoids this problem. 

It is assumed that the variance of the noise is small relative to the variance of the data 

itself, and after converting the data by the principal component method, the 

transformed data (components) whose variances are small will be considered noise. 

They can be safely excluded from subsequent training, assuming that the quality of 

the training model, at least, will not decrease. 

 

 

Figure 19- Output principal component analysis-variance reduction 

 

Principal component analysis (PCA) is an exploratory approach to reducing the 

dimension of a data set, in this case to 2D, used in exploratory data analysis to create 

predictive models. This method focuses on finding an orthonormal basis for data, 

sorting measurements in order of importance, and excluding low-significance 

measurements. The PCA method is described by the eigenvectors and eigenvalues of 

the covariance matrix. The eigenvectors (principal components) determine the 

direction of the new attribute space, and the eigenvalues determine its magnitude. 

Reducing the dimension of the data leads to their projection into a smaller subspace, 

where the eigenvectors form the axes (Figure 20). The figure below shows the 

process of changing an eight-dimensional space to a two-dimensional space. 
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Figure 20- Decorrelation of a new feature space 

 

Next, we use the k-means implementation of clustering, which is a machine 

learning method that identifies clusters of data objects in a data set. In general, 

clustering involves dividing data into groups (clusters). Clusters are defined as groups 

that are more similar to other objects in their cluster than to data objects in other 

clusters. The main element of the algorithm works based on the process of 

maximizing expectations. The waiting step assigns each data point its nearest 

centroid. Then, at the maximization stage, the average value of all points for each 

cluster is calculated and a new centroid is set. The quality of the defined clusters is 

based on calculating the sum of squared errors (SSE) after the centroids converge or 

coincide with the destination of the previous iteration. SSE is defined as the sum of 

the squared Euclidean distances of each point to its nearest centroid. Since this is a 

measure of error, the goal of k-means is to try to minimize this value (Figure 21). The 

appendix provides an example of binding a sample of data, namely each well, to a 

specific cluster. 

After clustering, a Random Forest regression is applied to the selected number 

of clusters. And then the forecast of oil production after the hydraulic fracturing 

operation is modeled. 
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Figure 21- Determination of the elbow point 

 

2.3 Summary of Chapter 2 

 

There's no such thing as a free lunch. The main idea of this expression in the 

key of this study is that there is no single flexible algorithm for any data set, 

regardless of the industry of the problem being solved. But this is the whole point of 

interest: finding the most suitable algorithm model for the problem under 

consideration. 

The linear regression algorithm is the simplest, but it has good performance. 

However, restrictions on the freedom of maneuver are the reason for the low 

frequency of applying this algorithm to real data. To a greater extent, the linear 

regression model is used as a base model for comparison with other machine learning 

algorithms. 

Problems related to the phenomenon of overfitting and bias are solved using 

Ridge and LASSO regression. LASSO regression allows to exclude features that 

have little effect on the prediction of production. 

When solving a complex forecasting problem, a common case is that the use of 

any of the algorithms does not provide the desired quality of dependency recovery. In 

such cases, there is the creation of a composition of algorithms, namely, the use of 

the method of ensembles of models. Due to the fact that this study considers a 

relatively massive data set, the inclusion of the principal components and clustering 

method in the modeling helps to avoid the influence of data noise and the 

phenomenon of multicollinearity by reducing the data dimension. 
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DISCUSSION  

3.1  Selection and analysis of algorithm quality metrics 

 

In the second chapter, we discussed the various types of algorithms that were 

used in this study to predict the flow rate of oil after a hydraulic fracturing operation. 

The comparison of the results is an integral part of the entire modeling process, this 

process is carried out on the basis of the selected metric. The choice of a suitable 

evaluation system-metrics - has an impact on how the performance of machine 

learning algorithms is measured and compared. And the most important point is that 

the metric influences the final choice of the working algorithm for the problem being 

solved. 

In this study, we consider the problem of predictive modeling, which results in 

the prediction of a numerical value. This type of task is fundamentally different from 

classification tasks, which involve predicting the class label. Therefore, using 

classification accuracy to evaluate forecasts is incompetent. This leads to the fact that 

it is necessary to use the error indicators developed for regression models. As I 

mentioned earlier, predictive modeling is a task that is solved using historical data to 

predict new data. Predictive modeling can be described as a mathematical problem of 

approximating the function of mapping input variables to output variables. Therefore, 

in this case, it is impossible to assess the accuracy of the developed models. The 

performance of the regression model is characterized by the approximation of 

forecasts to their expected values. 

The most common quality measures in regression problems are the following 

errors: 

 Mean absolute error (MAE); 

 Root mean square error (RMSE); 

 The coefficient of determination (    . 

 

Mean absolute error. The sum of the absolute differences between the 

simulated and actual values forms the average absolute error. This type of error 

characterizes how incorrect the forecast values are. However, having an idea of the 

magnitude of the numeric value, there is no knowledge of the overestimated or 

insufficient performance of the algorithm. The formal equation corresponding to this 

type of error is presented below: 

 
    

 

 
              (6) 
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Root mean square error. This type of error is the square root of the average 

square of the entire error. RMSE is a good measure of accuracy, but subject to 

comparing the prediction errors of different model configurations for a particular 

variable, rather than between variables, as the scale effect is apparent. This is a 

measure of how well the regression line matches the data points. The formula for 

calculating RMSE is as follows: 

 

                    
  

   

 

 

 

(7) 

 

 

The coefficient of determination. For quality control during training, the root-

mean-square error is effectively used, but this error does not give a concept of the 

degree of correctness of the problem being solved. Therefore, to compare the 

available machine learning algorithms, it is necessary to enter the coefficient of 

determination. The coefficient of determination measures the proportion of variance 

explained by the model in the total variance of the target variable. Provided that this 

error is as close to one as possible, the developed model explains the data well, but if 

it is close to zero, then the forecasts are comparable in quality to the constant 

prediction. The coefficient of determination is calculated according to the following 

formula: 

 

   
       

        
  

   

              
  

   

 
(8) 

 

3.2 Target object of forecasting: oil flow rate or the percentage of achieving the 

planned flow rate 

 

In this section, I will demonstrate one of the problems that I encountered while 

conducting research. The main task of the algorithm is to simulate the forecast of oil 

production after the hydraulic fracturing process. At the first stage of the study, the 

target production forecast represented the percentage of achieving the planned flow 

rate after hydraulic fracturing. This value depends on the value of the planned flow 

rate, which in turn is determined by a number of factors. The planned flow rate is a 

dynamic value, which largely depends on the economic conditions of the oil and gas 

market. The percentage of achievement of the planned flow rate can take different 

values, the hydraulic fracturing is considered successful if the achievement value 

exceeds one hundred percent. Predicting this value, the following error results were 

obtained: MAE=13.6961, RMSE=16.8249. Table 5 shows the forecast of the 

percentage of achieving the planned flow rate for ten random wells from the 

considered data set. 
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Table 5- Percentage of reaching the planned flow rate: output forecast / actual 

values 

Well # 

Achievement of an increase in production rate, 
[%]  

Actual values Forecast values 

1 61,5 76,57 

2 104 103,75 

3 110,6 96,56 

4 50 64,57 

5 16 49,84 

6 91,7 98,66 

7 33,6 54,56 

8 104,6 100,07 

9 61,2 75,39 

10 166,5 142,62 

 

The increased amount of errors and the lack of knowledge of the actual flow 

rate after hydraulic fracturing reveals that this target value does not provide the 

desired quality of the result. The percentage of achieving the planned flow rate is not 

a variable proportional to the factors discussed in the first chapter. Therefore, 

choosing the correct forecast target value is the most important step in the simulation. 

To improve the results, the oil flow rate (t/day) after hydraulic fracturing was selected 

as the target value. The results of forecasting and comparative analysis are presented 

in the next section. 

 

3.3  Comparative analysis of the results of forecasting the oil flow rate from 

various algorithms 

 

This section is devoted to the comparative analysis of the results of various 

algorithms for modeling the forecast of oil production after hydraulic fracturing. As 

mentioned in section 3.1, the identification of the most appropriate algorithm for the 

data sample under consideration will be based on the error metric. 

The results of predicting the linear regression algorithm on random ten wells 

are presented in Table 6. The visualization of the correlation of actual and predicted 

values is shown in Figure 22. 

Table 6- Predicting oil production after hydraulic fracturing: Linear Regression 

 
Actual values, 
[t/day] 11.01 5.3 10.2 14.7 16.3 14.3 15.8 13.5 6.6 6.9 

Predicted 
values, [t/day] 13.818 10.069 11.849 10.164 7.654 10.949 6.844 12.009 12.623 11.954 
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Figure 22- Output: Linear Regression 

  

It should be noted that there is no excellent correlation between the forecast 

and actual values of oil production, because there are significant deviations in the 

predictions. 

Next, consider the modifications of linear regression. The results of predicting 

the LASSO regression algorithm on random ten wells are presented in Table 7. A 

visualization of the correlation of actual and predicted values is shown in Figure 23. 

Table 7- Predicting oil production after hydraulic fracturing: LASSO 

Regression 

 
Actual 
values, 
[t/day] 11.01 5.30 10.2 14.7 16.3 14.3 15.8 13.5 6.6 6.9 

Predicted 
values, 
[t/day] 11.386 6.278 12.485 12.463 13.314 13.183 12.571 14.103 8.638 7.536 
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Figure 23- Output: LASSO Regression 

 

When using the LASSO model, the results of predicting the oil flow rate are 

significantly improved. In Table 7, there are no high drifts of oil values in 

comparison with the linear regression forecasts. The error is determined when the 

actual oil values exceed the average value. 

Similar results of the LASSO algorithm are observed when using Ridge 

regression. Differences in the forecast flow rate in regression, the Ridge has reduced 

values only in hundredths (Table 8). 

 

Table 8- Predicting oil production after hydraulic fracturing: Ridge Regression 

 
Actual 
values, 
[t/day] 11.01 5.30 10.2 14.7 16.3 14.3 15.8 13.5 6.6 6.9 

Predicted 
values, 
[t/day] 11.006 6.091 12.414 12.14 13.068 13.009 12.073 14.025 8.519 7.466 
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Figure 24- Output: Ridge Regression 

 

Next, we will consider the results of applying the polynomial regression 

algorithm. In the table below, there is a significant difference between the actual and 

projected oil flow rates. 

Table 9- Predicting oil production after hydraulic fracturing: Polynomial 

regression 

 

Actual 
values, 
[t/day] 6.8 3.90 5.8 9.4 17.4 12.7 13.8 6.7 12.5 6.2 

Predicted 
values, 
[t/day] 15.829 9.631 11.956 10.962 7.791 11.093 6.045 12.041 12.002 11.998 
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Figure 25- Output: Polynomial regression 

 

According to Figure 24, we observe a less pronounced correlation directly in 

the test data. Therefore, this forecast behavior is the cause of high final errors. A 

similar situation is observed when applying the Random Forest algorithm. The 

difference in the results of the forecast of the flow rate of training and test wells can 

be observed in Figure 25. 

Table 10- Predicting oil production after hydraulic fracturing: Random Forest 

Regression 

 

Actual 
values, 
[t/day] 11.01 5.30 10.2 14.7 16.3 14.3 15.8 13.5 6.6 6.9 

Predicted 
values, 
[t/day] 15.212 12.32 12.163 12.229 10.079 9.892 9.31 12.198 13.888 10.658 

 

Let's move on to the final algorithm for predicting the oil flow rate after 

hydraulic fracturing - the method of ensembling. From the visual interpretation of 

Table 11, we can conclude that this algorithm is the most suitable for the data sample 

under consideration. 
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Figure 26- Output: Random Forest Regression 

Table 11- Predicting oil production after hydraulic fracturing: Ensemble 

method 

 
Actual values, 
[t/day] 6.2 12.00 10.2 7.7 3.5 14.3 4.8 9.3 4.8 16.8 

Predicted 
values, 
[t/day] 7.362 11.94 10.44 8.208 6.045 12.86 6.985 9.465 7.877 14.912 

 

Figure 27- Ensemble method 
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However, there are increased values of the forecast flow rate at low actual 

values. This phenomenon is explained by the fact that in fact, low flow rates are the 

"noise" of the sample under consideration. These "noises" relative to the average flow 

rate are also significantly underestimated, which is the reason for the presence of 

forecasting errors in the ensemble method. 

Table 12- Comparative analysis of algorithms 

 

Algorithm MAE RMSE      

Linear 

regression 4.039 4.582 0.4928 

LASSO 

Regression 1.623 2.039 0.721 

Ridge 

Regression 1.546 1.98 0.757 

Polynomial 

regression 4.378 5.41 0.678 

Random Forest 

Regression  1.208 1.469 0.664 

Ensemble 

method 0.1475 1.5449 0.8591 

 

The above table also proves that the method of model ensembles has 

comparatively the best results. The coefficient of determination is as close as possible 

to one (0.86) with the method of ensembling. Therefore, this algorithm is most 

suitable for identifying the best candidate for hydraulic fracturing operations. 

 

3.4  Forecasting production on potential candidates for hydraulic fracturing 

 

The practical significance of this research work lies in the application of the 

developed algorithm to potential wells. After conducting a comparative analysis and 

selecting the most effective algorithm for solving the current problem, the next step is 

to implement the process of selecting the best candidate for hydraulic fracturing. To 

implement this task, a database of potential candidates (Appendix D) was formed 

from the fund of current wells of the Uzen field. After filling in the database based on 

previously established criteria, I applied the selected algorithm (an ensemble of 

models) to this database. The results of predicting the oil flow rate for potential 

candidates are shown in Figure 28: 
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Figure 28- Production forecasting: potential candidates for hydraulic fracturing 

 

The application of the chosen algorithm allows to determine the best 

candidates for fracking operations among potential wells. For example, wells 11, 14, 

18 are the best candidates, because their flow rate exceeds 20t/day. In comparison 

with wells 28, 19 - the forecast production of which does not exceed 6 t / day. This 

technology allows the selection of candidates for hydraulic fracturing operations to be 

carried out in an accelerated format. 

Checking the quality of the algorithm performance was the next stage of this 

study. After the request was made, materials were received on the results of hydraulic 

fracturing carried out in 2021 (January, February, March). Next, a database was 

created from a sample of potential candidates, including wells with a recent hydraulic 

fracturing operation. The next stage is a comparative analysis of the forecast flow rate 

of the candidates considered earlier and the actual flow rates of the wells where the 

hydraulic fracturing was carried out in 2021. The forecast results are shown in the 

figure below: MAE=4.7; RMSE=5.902;          . In comparison with the 

previously studied sample of 100 wells, there is a hanging error value. It should also 

be noted that the greatest deviation in the forecast values of the flow rate is observed 

at the actual low oil flow rates (left part, Figure 29). The existing margin of error is 

due to a number of factors: 

 The projected target flow rate is the average flow rate for three months 

after the hydraulic fracturing. Since hydraulic fracturing at the wells 

under consideration was carried out relatively recently, the wells did not 

reach their potential. For a qualitative analysis, the time factor is 

necessary. 

 

 The sample of candidate wells is a new and unknown data set for the 
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algorithm. Therefore, the presence of a certain percentage of errors, for 

the specified reason, cannot be avoided. 

 

 The scale of the original sample is relatively small. Increasing the 

number of wells that present historical data will improve the flow rate 

prediction result and significantly reduce the error. 

 

Figure 29- Production forecasting: Hydraulic Fracturing Wells - 2021 

 

3.5  Summary of Chapter 3 

 

This chapter is devoted to a comparative analysis of the algorithms used and 

explains the practical significance of this research work. 

The identification of the most suitable and working algorithm for the data 

sample under consideration was carried out on the basis of various types of errors. 

The use of absolute mean error and mean square error does not provide the desired 

quality of the result. First of all, because this metric shows only the magnitude, but 

not the direction of the error. In addition, this metric on high-rate wells summarizes 

the increased error, in comparison with low-rate wells. The use of the coefficient of 

determination avoids the existing problems. 

The ensemble model method is the most working algorithm applicable to the 

current problem, due to the fact that it has a minimum error value. This algorithm was 

used to identify the best candidates for hydraulic fracturing. And later, a comparative 

analysis was carried out with the wells where the hydraulic fracturing was carried out 

in 2021. This analysis proved the practical applicability of machine learning in the 

field of hydraulic fracturing. 
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4 ECONOMIC MODEL 

 

Hydraulic fracturing is one of the most important discoveries in the field of 

energy in the last fifty years. This technology has significantly increased the volume 

of produced hydrocarbons. This growth has dramatically lowered energy prices, 

strengthened energy security, and even reduced air pollution and carbon dioxide 

emissions by replacing coal in power generation. 

The result of the application of various technologies aimed at the extraction of 

hydrocarbons depends on many factors, both geological, physical, and chemical, as 

well as technological. As a rule, the more complex the process or technology of oil 

production, the more qualitative and quantitative parameters and properties should be 

taken into account when evaluating its effectiveness. One of the most complex and 

expensive technologies aimed at increasing the degree of oil recovery is hydraulic 

fracturing. To solve the problems of predicting hydraulic fracturing, to achieve 

sufficiently high technical and economic indicators of the effectiveness of measures, 

an objective assessment is necessary. 

The economic justification of the proposed measures is necessary, because 

only on the basis of economic indicators, such as the indicator of the annual 

economic effect of hydraulic fracturing, the economic efficiency of capital 

investments can be judged on the economic efficiency of the proposed measures. The 

profitability index (PI) characterizes the economic return on investment and 

represents the ratio of the total net income to the total volume of capital investments, 

its value is interpreted as follows: if PI >1, the project is effective, if PI <1 – the 

project is not profitable. 

 
      

       

      
      

 

    

 
(9) 

where, 

R- additional revenue from hydraulic fracturing; 

OPEX- operating costs for additional oil production; 

CAPEX – hydraulic fracturing costs; 

i - discount rate. 

In the framework of this study, the initial stage of the hydraulic fracturing 

operation was considered - the selection of a candidate well. The cost-effectiveness 

of hydraulic fracturing in this project is estimated using net discounted income. As 

mentioned earlier, the cost-effectiveness of the project is affected by a number of 

factors. Optimization of the fracture geometry based on its size and conductivity 

belongs to the stage of hydraulic fracturing design (Appendix D). Of course, this 

stage has a preferred impact on the economy of this technology, since it determines 

the main operating costs. In this section, the oil gain from the hydraulic fracturing 

operation is the main factor in the decision to conduct hydraulic fracturing. 
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Therefore, the economic feasibility of the project is based on the volume of 

additional production obtained by selecting the right candidate for hydraulic 

fracturing. 

Table 13- Comparative analysis: an economic model 

 

Case# 
Additional production, 

10^3 tons 
Number of hydraulic 

fracturing operations, units 
Average 

growth, t/day 

Percentage of 
economic success 

by PI>1 

Case#1 137 72 12.2 88 

Case#2 235 141 8.5 77 

In the framework of this study, a comparative analysis of the economic 

model of behavior with the use of the developed technology (Case#1, Table 13) 

and without (Case#2, Table 13) was carried out. The use of this technology not 

only allows to save time by performing accelerated analysis, but also significantly 

increase the company's profit. In the first case, the use of machine learning in the 

process of selecting wells for hydraulic fracturing allows not only to exclude 

negative candidates, but also not to leave "overboard" effective wells. The second 

option involves conducting hydraulic fracturing on positive and negative 

candidates. Thus, the average increase in oil production by 3.7 t/day of the first 

option exceeds the second one. At the same time, the planned indicators of 

cumulative production are achieved with a smaller number of hydraulic fracturing 

operations. Consequently, lower operating costs and higher profits due to 

additional oil production ensure the economic profitability of the project (Figure 

30). 
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Figure 30- Economic justification of the project 
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CONCLUSION 

In conclusion, it should be noted that the main goal of the project was to 

create a machine learning algorithm to identify the best candidate well for 

hydraulic fracturing. Development without applying the hydraulic fracturing 

methodology at the Uzen field is impossible. The question of improving and 

optimizing the method under consideration by correctly determining the impact 

candidate is relevant. Based on the literature review, a list of factors influencing 

the effectiveness of this methodology for increasing oil recovery was established. 

Summing up the results of the implemented project, the selected algorithm 

model performs automated processing and analysis of a large data stream. Based 

on the oil production forecast, the best candidates for hydraulic fracturing are 

determined. The use of the developed technology allows not only to reduce 

operating costs by screening out negative candidates, but also not to miss out on 

the benefits of selecting the most efficient wells. 

The weaknesses of this project are that in the framework of machine 

learning, it is impossible to avoid the presence of errors due to the phenomenon of 

"over fitting" data. However, this work has a deep potential for further research. 

The developed model is primarily dynamic. Increasing the number of influencing 

criteria will allow for a more detailed and in-depth research. In addition, changing 

the scale of the data sample makes it possible to significantly reduce the error 

value, thereby improving the forecast of oil production. As a result, the main task 

was completed. 
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LIST OF NOMENCLATURE 

mD  Millidarcy (units of permeability) 

m     Meter (unit of length) 

atm  Atmosphere (unit of pressure) 

       Initial reservoir pressure 

      Current reservoir pressure  

       Pearson coefficient 

       Standard deviation 

      Coefficient of a linear equation 

        Regularization parameter 

2D    Two-dimensional space 

      Coefficient of determination  

 

R      Additional revenue from hydraulic fracturing 

i        Discount rate 

         Covariance between two variables 
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LIST OF ABBREVIATIONS 

 

HF   Hydraulic Fracturing 

PI     Productivity Index  

WC  Water Cut 

IW    Injection Well 

PW   Production Well 

TBD  Information system «Geographically distributed data bank» 

std     Standard deviation 

min   Minimum sample value 

max   Maximum sample value 

LASSO  Least Absolute Shrinkage and Selection Operator 

SSE    Sum of squared errors 

PCA    Principal component analysis  

MAE   Mean absolute error  

RMSE  Root mean square error  

NPV     Net present value 
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APPENDICES 

Appendix A. Database of training and test wells 

New 
planned 

fracturing 
interval 

Net pay 
thickness, 

m 
P_c/P_i 

Water 
cut, % 

Oil 
rate, 
t/d 

Permeability, 
mD 

Injection 
well, m 

Producing 
well, m 

Achievement 
of an increase 
in production 

rate, % 

Flow 
rate 
after 

HF, t/d 

WC_group 

0 16 1.17068 60 1.68 2.4 230 525 61.5 6.2 
Medium-
watered 

1 16.9 1.07231 39 5.12 5.12 355 215 104 12 Low watered 

0 13 1.08215 57 5.41 8.43 240 184 110.6 10.2 
Medium-
watered 

0 11 1.13519 60 1.35 6.8 511 316 50 7.7 
Medium-
watered 

1 8.5 0.73553 56.13 3.31 4.75 391 259 16 3.5 
Medium-
watered 

0 14.5 1.20086 22.5 3.4 1.6 367 201 126 16.2 Low watered 

0 15 1.17272 77.5 1.14 6.25 265 214 157 14.9 
Medium-
watered 

0 19.6 1.23839 21.33 5.91 6.25 218 279 102 14.4 Low watered 

0 8 1.05076 41.5 1.55 9.72 549 445 66 8.3 
Medium-
watered 

0 12.6 0.96632 63 4.04 8.13 245 200 29 4.9 
Medium-
watered 

1 24 0.86312 76.09 3.73 7.64 1079 246 120 12.5 
Medium-
watered 

0 128 1.2196 40 2.52 18 521 185 99 13.5 Highly-watered 
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Continuation of Appendix A. Database of training and test wells 

New 
planned 

fracturing 
interval 

Net pay 
thickness, 

m 
P_c/P_i 

Water 
cut, % 

Oil 
rate, 
t/d 

Permeability, 
mD 

Injection 
well, m 

Producing 
well, m 

Achievement 
of an increase 
in production 

rate, % 

Flow 
rate 
after 

HF, t/d 

WC_group 

1 13.3 1.0789 60 3.36 9.62 181 177 104 10.5 
Medium-
watered 

1 16 1.18052 32 8.56 12.6 197 222 41.7 14.9 Low watered 

1 12.7 0.89127 15 85 17.1 1178 201 95 10.2 Low watered 

0 8.4 1.08828 50 2.1 11.3 449 127 77 7.8 
Medium-
watered 

0 9 1.03199 44 0.94 4.65 399 186 160 15.8 
Medium-
watered 

1 14.2 1.37727 90.32 1.06 6.3 305 295 66 6.1 Highly-watered 

0 12 0.94343 38 5.2 19.5 307 189 172.7 19.8 Low watered 

0 10 1.32283 60 1.01 7 390 264 68 7.6 
Medium-
watered 

0 10 0.98377 89.6 0.44 4.45 389 168 103.3 7.632 Highly-watered 

1 10.1 1.13133 98.57 0.23 11.5 314 189 152.6 10.7 Highly-watered 

1 25.4 1.01328 53.45 1.56 8.84 152 172 126 13.8 
Medium-
watered 

0 13.9 0.85374 26 1.86 3.99 437 246 199 17.3 Low watered 

1 20.6 1.32283 59.2 2.4 6.25 333 276 65 8.7 
Medium-
watered 

0 11 1.0789 20 2.01 9.54 509 238 22 3.9 Low watered 

0 17.8 1.03199 66 1.43 14.1 774 193 77 9.3 
Medium-
watered 

0 11 0.8725 80.94 1.28 12 555 228 122 14.7 Highly-watered 

0 9.6 1.0789 85.63 1.81 6.833333 1194 315 148 16.3 Highly-watered 



 

63 
 

Continuation of Appendix A. Database of training and test wells 

New 
planned 

fracturing 
interval 

Net pay 
thickness, 

m 
P_c/P_i 

Water 
cut, % 

Oil 
rate, 
t/d 

Permeability, 
mD 

Injection 
well, m 

Producing 
well, m 

Achievement 
of an increase 
in production 

rate, % 

Flow 
rate 
after 

HF, t/d 

WC_group 

0 14 1.03199 94 0.5 5.15 470 168 70 8.2 Highly-watered 

1 15.9 1.14363 20 2.01 13.1 428 285 102 11.2 Low watered 

0 18 1.03199 40 4.03 6.28 195 94 75 12.4 Highly-watered 

1 14.5 0.93817 66.65 0.84 8 189 119 94 11.5 
Medium-
watered 

0 11 0.99447 69.5 1.28 5 221 157 143 17.1 
Medium-
watered 

0 10.6 0.96632 36 2.68 17.2 476 237 21 3.9 Low watered 

0 11 1.01328 91.7 0.28 7.64 443 207 173.4 12.6 Highly-watered 

1 13 1.08215 91.8 3.72 7.08 396 205 100.9 10.8 Highly-watered 

0 9.1 1.03199 54 3.86 11.9 571 279 137.9 17.6 
Medium-
watered 

0 20 0.84436 68.07 2.68 14.7 479 194 120.1 14.6 
Medium-
watered 

0 10.5 1.24777 51.45 7.33 9.95 409 193 60.7 12.7 
Medium-
watered 

0 6 1.06014 2 8.22 9.37 287 191 116.7 14.9 Low watered 

0 17.2 1.03762 24 6.38 11.2 399 217 129.1 15.1 Low watered 

1 10.3 1.00385 43 5.26 9.92 569 382 41.5 5.3 
Medium-
watered 

1 18.6 1.1305 74.08 3.59 5.84 449 194 107.8 13.5 
Medium-
watered 

0 16.5 0.97476 90.48 0.08 7.1 581 278 94.3 17.4 Highly-watered 

0 19.8 1.03199 73 2.27 8.61 456 151 124.5 9.4 
Medium-
watered 
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Continuation of Appendix A. Database of training and test wells 

New 
planned 

fracturing 
interval 

Net pay 
thickness, 

m 
P_c/P_i 

Water 
cut, % 

Oil 
rate, 
t/d 

Permeability, 
mD 

Injection 
well, m 

Producing 
well, m 

Achievement 
of an increase 
in production 

rate, % 

Flow 
rate 
after 

HF, t/d 

WC_group 

0 11 1.0789 38 3.64 13.3 392 193 87.5 10.1 Low watered 

0 10.1 1.00291 80.87 0.32 12.8 622 540 134.3 12 Highly-watered 

0 29.5 0.89127 40 0.5 12.5 399 204 69.2 9.9 Highly-watered 

0 6 1.10423 45 2.31 10.8 283 243 67.8 8.1 
Medium-
watered 

1 19.5 1.14457 98 0.94 24.6 486 260 166.4 19 Highly-watered 

0 12.1 1.17272 71 1.46 6.99 599 514 87.7 10 
Medium-
watered 

1 7.7 1.15395 40 35.7 15.5 639 197 59.6 6.6 Highly-watered 

0 12.6 0.84436 30 1.76 3 474 379 30.5 3.9 Low watered 

0 20.1 1.18052 85.71 1.08 7.24 243 273 120.8 11.5 Highly-watered 

0 14 1.32809 37 5.29 4.4 339 134 92.3 10 Low watered 

1 16.5 1.00344 40 5.03 17 536 250 104.4 17.1 Highly-watered 

0 17.6 1.2789 21.7 9.85 13.4 333 255 111 16.7 Low watered 

1 14.9 0.98377 34 2.21 11.7 501 881 124 15.8 Low watered 

0 11 0.9513 85.71 1.44 32 280 210 89 11.01 Highly-watered 

0 5.9 0.98377 22.96 6.46 10.3 296 208 135 15.3 Low watered 

0 9 1.08215 96.55 0.06 13.3 157 105 67 6.5 Highly-watered 

0 20 1.13133 60.33 0.33 22.5 544 193 113 15.5 
Medium-
watered 

1 13.1 1.13133 55 3.78 6.14 208 326 164 16.7 
Medium-
watered 

1 11 1.18052 64.69 1.48 3.3 310 198 113 11.1 
Medium-
watered 
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Continuation of Appendix A. Database of training and test wells 

New 
planned 

fracturing 
interval 

Net pay 
thickness, 

m 
P_c/P_i 

Water 
cut, % 

Oil 
rate, 
t/d 

Permeability, 
mD 

Injection 
well, m 

Producing 
well, m 

Achievement 
of an increase 
in production 

rate, % 

Flow 
rate 
after 

HF, t/d 

WC_group 

1 11.3 1.25922 66.87 3.61 6.77 428 215 60 10.5 
Medium-
watered 

0 19.4 1.06247 59.5 0.68 9.18 258 685 56 4.96 
Medium-
watered 

0 15.9 0.93458 40 4.03 12.5 443 505 75 10.1 Highly-watered 

1 15.7 1.03296 88 0.3 8.61 396 196 133 13.5 Highly-watered 

0 11 0.82637 70.29 0.5 4.25 301 271 91 11.9 
Medium-
watered 

0 16.1 1.04279 67.7 0.81 8 536 246 47 5.8 
Medium-
watered 

0 17.5 1.18052 92.6 0.68 5.71 224 339 143 13.9 Highly-watered 

0 17.1 1.16085 56.57 1.82 9.98 344 179 84.3 9.9 
Medium-
watered 

1 8 1.03296 100 0 15 607 252 119.5 12.6 Highly-watered 

1 16.2 1.08215 86 1.29 10.8 455 250 54.5 6.9 Highly-watered 

1 13.7 0.88539 46.27 0.9 13.3 404 381 115.6 14.3 
Medium-
watered 

1 18 0.86572 68.89 3.92 15.6 367 220 114.8 14.5 
Medium-
watered 

1 11 1.18052 100 0 7.4 416 304 74.8 8.3 Highly-watered 

1 12.7 1.23955 81 0.32 5.5 418 300 154.6 17.9 Highly-watered 

0 20.8 1.33792 60.36 2 10 374 586 45.4 6.3 
Medium-
watered 

1 10.8 1.03296 52 2.42 9.7 570 204 56 6.7 
Medium-
watered 
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Continuation of Appendix A. Database of training and test wells 

New 
planned 

fracturing 
interval 

Net pay 
thickness, 

m 
P_c/P_i 

Water 
cut, % 

Oil 
rate, 
t/d 

Permeability, 
mD 

Injection 
well, m 

Producing 
well, m 

Achievement 
of an increase 
in production 

rate, % 

Flow 
rate 
after 

HF, t/d 

WC_group 

1 8.3 0.9149 97 0.23 12.5 359 301 127 13.7 Highly-watered 

1 7.5 1.09198 44 0.47 8.29 224 275 77.8 9.4 
Medium-
watered 

1 19.5 0.79685 71 1.22 11.4 450 349 25.8 6.8 
Medium-
watered 

1 12 1.1215 100 0 9.7 496 199 97.8 11.3 Highly-watered 

0 10.2 1.18052 53.5 7.41 9 265 135 113.1 17.2 
Medium-
watered 

1 9.8 1.16085 42 3.89 16.2 398 274 89 9.9 
Medium-
watered 

1 12.5 1.03296 38 2.6 8.8 440 632 131.6 12.1 Low watered 

0 19.9 1.67241 70 4.28 33.8 526 229 151.1 18.8 
Medium-
watered 

1 8 1.03296 44 1.98 9.68 248 211 119.9 14 
Medium-
watered 

1 23 0.90507 10 14.4 11.1 408 228 126.1 19.5 Low watered 

1 13.8 0.99361 65.2 1.75 15.1 330 287 97.8 9.4 
Medium-
watered 

0 16.2 0.96409 61 7.2 10 318 191 85.1 12 
Medium-
watered 

1 11.5 1.03296 63.7 1.52 10.6 606 199 71.8 8.1 
Medium-
watered 

1 19.5 0.90507 65 4.4 14.1 284 307 20.4 5.7 
Medium-
watered 
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Appendix B. Data: collection, preparation, quality check, analysis 

 

 

Figure B.1- Data sampling: сclassification of wells by water cut parameter 

 

 

Figure B.2- Data sampling: Average oil flow rate after hydraulic fracturing, 

[t/d] 
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Continuation of Appendix B. Data: collection, preparation, quality check, 

analysis 

 

Figure B.3- 2020 HF: Average oil flow rate after hydraulic fracturing, [t/d] 

 

Figure B.4- 2019 HF: Average oil flow rate after hydraulic fracturing, [t/d] 

Figure B.5- 2018 HF: Average oil flow rate after hydraulic fracturing, [t/d] 
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Continuation of Appendix B. Data: collection, preparation, quality check, 

analysis 

  

 

Figure B.6- 2020/19/18 HF: сclassification of wells by water cut parameter 

 

Figure B.7- 2020: Production statistics by WC group 
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Continuation of Appendix B. Data: collection, preparation, quality check, 

analysis 

 

Figure B.8- 2019: Production statistics by WC group 

 

 

Figure B.9- 2018: Production statistics by WC group 
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Appendix C. Machine learning: output data 

 

Figure C.1- Determination of the elbow point 

 

 

Figure C.2- Influence of parameters on well performance forecasting 
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Continuation of Appendix C. Machine learning: output data 

 

 

Figure C.3- Example of K-Mean well classification
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Appendix D. Forecasting production on potential candidates for hydraulic 

fracturing 

Table D.1- Database of potential hydraulic fracturing candidates 

 

New 
planned 

fracturing 
interval 

Net pay 
thickness 

P_c/P_i 
Water 

cut 
Oil 
rate 

Permeability 
Injection 

well 
Producing 

well 

1 14 0.99 86 0.4 13 674 236 

1 12.7 1.05 79 0.3 5.2 374 204 

1 9.2 0.99 81 1.3 12.1 283 199 

1 16.2 0.85 77 2.1 6 166 222 

0 13 1.18 58 2.9 8.9 164 195 

0 12.9 1.14 62 3.5 11.3 231 415 

0 15.8 1.01 74 1.9 7.2 321 74 

0 18.5 1.16 76 2.6 6.6 172 454 

1 5.5 1.06 62 2.7 11.5 297 233 

0 12.7 1.13 62 4.4 19.7 514 288 

0 10 0.88 64 3 8.9 171 472 

1 8.7 1.04 95 0.8 12.6 182 224 

0 9 1.09 92 1.9 17.6 328 145 

1 13.9 0.81 97 0.5 14.5 414 273 

0 8.1 1.31 75 1.8 11.5 387 181 

1 6.7 1.28 76 2.2 12 251 283 

0 10 1.08 83 1.8 4.9 80 222 

0 26.3 0.93 75 0.8 3.2 182 373 

1 13.1 1.46 61 3 8 353 333 

1 20.1 0.94 86 2.3 10.2 252 231 

0 10.4 0.81 54 1.8 6.5 263 208 

0 8.3 0.93 95 1.2 13.7 374 162 

1 32 1.13 78 3.7 11 819 282 

0 20.7 1.11 54 3.7 9.6 248 318 
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Continuation of Appendix D. Forecasting production on potential candidates for 

hydraulic fracturing 

 

 

 

Figure D.1- Comparison of the average forecasted (red line) and actual (green 

line) oil production rates 
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Appendix E. Economic justification 

 

Figure E.1- Dependence of the cost of hydraulic fracturing on the fracture 

length 

 

Figure E.2- Discounted return of investments 

 


