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ANNOTATION

This project presents a methodology for identifying the most effective
candidates for hydraulic fracturing based on well performance forecasting. The
methodology is developed with the use of massive data mining tools.

Hydraulic fracturing provides a significant impact on the recovery of
production, and therefore requires a huge investment due to operating costs. Applying
the correct design to a non-efficient candidate ensures that this method of production
intensification is not appropriate. Due to the fact that the selection of candidates is the
first stage of the implementation of the hydraulic fracturing process, the use of the
developed technology will significantly reduce the economic risks.

The third stage of development of the Uzen field is characterized by the need
for hydraulic fracturing to increase oil recovery. Every year, more than 100 hydraulic
fracturing operations are carried out at this field. The huge volume of the current fund
of wells complicates the process of selecting candidates. This problem requires a
comprehensive approach to solving and determines the relevance of this study.

To date, the selection of a candidate well for hydraulic fracturing is a
significantly time-consuming process. The time factor is due to the requirement to
consider a huge amount of information about the history of production, the geological
and technical measures carried out for the specified well, the method of development
of the field as a whole, etc. The developed technology not only provides accelerated
analysis of significant amounts of information, but also represents the qualitative
predictive power of data mining tools for geologically complex reservoirs.



AHHOTALIMSA

B naHHOM 1poekTe TpeacTaBlieHa METOJMKAa BBISBIEHUS Haubosee
3¢ (PEeKTUBHBIX KAHIUJIATOB JJI MPOBEACHUS THAPABINYECKOrO pa3phiBa IUlacTa Ha
OCHOBE  NPOTHO3UPOBAHUS  TMPOU3BOAUTENBHOCTH  CKBaOXXHMH.  MeTomonorus
pazpaboTaHa ¢ TPUMEHEHHEM MHCTPYMEHTOB MHTEJUIEKTYaJbHOIO  aHajau3a
MAaCCHUBHBIX JIAHHBIX.

l'uppopaspbiB mnacta  oOecrieyMBaeT  3HAUYMTENbHOE  BIUSHUE  HA
BOCCTAaHOBJICHME  MPOM3BOJCTBA, U  COOTBETCTBEHHO  TpeOyeT  OrpOMHBIX
KaluTaJOBIOKEHUN, OOYCIOBICHHBIX OINEpPalUOHHBIMH 3aTpataMu. [IpumeHeHue
OpaBWIBHOIO  Au3aiiHa K  He  A(Q(EKTUBHOMY  KaHAMJATY  TapaHTHUPYET
HELEeNeco00pa3HOCTh NPUMEHEHHUS] JaHHOM MeToaa WHTeHcUuuKanuu Ao0buu. B
CBS3M C TEM, UYTO MOJAOOP KaHIUIATOB SBIISAETCS IMEPBBIM 3TAlOM OCYUIECTBICHUS
npouecca ['PII, mpumeHeHue pa3zpabOTaHHON TEXHOJOTMHU, 3HAYUTEIHHO CHU3UT
SKOHOMUYECKUN PUCKH.

Tperbst cramus pa3pabOTKM MECTOPOXKACHUS Y3€Hb XapaKTepHU3yeTCs
HeoOxoaumocThio TipoBeaeHus ['PII gns yBenwuenus Hedreotnauu. ExeromHo Ha
JaHHOM MecTopoxaeHuu npoBoautcs 6osee 100 oneparuu I'PII. Orpomusbiit 00beM
TeKymero (oHIa CKBaXUH YCIOXHSET Ipolecc Mojadoopa KaHaumaroB. JlaHHas
npobieMa TpeOyeT KOMIUIEKCHOTO TIOAXOJa K PEIICHHI0 MW 00yClIaBIMBaeT
aAKTyaJIbHOCTb IAHHOTO UCCJIEAOBAHMS.

Ha ceromusmHuii neHh MOAOOp CKBaKWHBI-KaHAWIATa [UIsI TPOBEICHUS
THJIPABIMYECKOTO pa3pbiBa IUIACTa SBJISETCS 3HAYUTEIHHO BpEMs 3aTPaTHBIM
nporieccoM. PakTop BpeMeHH 00YCIOBIEH TPeOOBAaHUEM PACCMOTPEHHUS OIPOMHOIO
MaccuBa MHGOpPMAIUK 00 HCTOPHHU JOOBIYM, MPOBEICHHBIX T'€OJOI0O-TEXHHUYECKUX
MEpPONPUATUH YKa3aHHON CKBa)KHHBI, CII0C00a pa3pabOTKN MECTOPOXKIICHUS B IICIIOM
u 1p. PazpaboraHHas TEXHOJOTHS HE TOJBKO OOECIIEYMBACT YCKOPEHHBIM aHAIIN3
3HAYUTEIBHBIX O00BbEMOB HWH(MOpPMAMKA, HO W TMPEACTaBISICT KAaYCCTBCHHYIO
MIPOTHOCTUYECKYIO CHUJTy MHCTPYMEHTOB HMHTEIUICKTYaJIbHOTO aHaiM3a JAHHBIX IS
T'€OJIOTUYECKHU CIOKHBIX KOJUIEKTOPOB.



AHJIATIA

byn xobanma  yHFeIMasapAblH ©HIMIH Ooipkay OapbIChiHAA, KabaT TUApPO
KAPBUIBICBIH JKYPri3y YIIIH €H THIMJII YMITKEp YHFBIMAHbl aHBIKTay 9JICTEMeECi
YChIHBbUTFaH. JKanmel 9/1icTeMe KONTEreH MAIIMETTEp MEH JEpeKTepAl 131ey, Tanjaay
OapbICHIHA KACATIIHI .

Kabar ruapo »apbUIbiChl ©HIIPICTI KallblHA KENTIpyre alTapiblKTail acep
€Te/ll, )KOHE COMKECIHIIEe ONepalysuIbIK MIbIFbIHApFa OallIaHbICThl YJIKEH KoJeMeri
MHBECTULIMSATIAPABI KaXeT eTell. THuiMAl eMec yMITKepre Iypbic AU3aiHIbl KOJJaHY,
MYHail eHJIpYyJll apTThIPYFa, OChl 9MICTI KOJJAHYABIH KAKET €MECTIrHE KEeNmuUIIiK
Oepeni. YMITKEp YHFbIMaJIapAbl IpiKTey, KabaT TUAPO KapbUIbICHI MPOLECIH KYy3ere
aceIpyZIblH  OIpiHII Ke3eH1 OOJFaHABIKTaH, JaMbIFaH TEXHOJOTHUSHBI KOJIJIaHY
AKOHOMUKAJIBIK TOYEKEIAEPAl €A0yip TOMEHICTE/II.

O3eH KeH OpHBIH WTepylH YIIIHII Ke3eHi, MyHaill eHIipyal apTThIpy YIIiH
Ka0aT ruJpo >KapbUIBICKIH KYPri3y KakKeTTUlriMen cunatranaabl. Kbl caifbiH O3eH
keH opHbiHAa 100-1eH actam KadaT rUapo KapbUIBICHI ONEpalUsIaphl KYPri3iieal.
Kazipri yakpITTarbl YHFbIMaNap KOPBIHBIH KONTIrl, YHFbIMAaHbl TaHAay HpPOLECIH
KUBbIHJaTaAbl. byl MoceneHi menry skaH-*KaKThl KO3KapacTbl KaXKeT €Telll, COHBIMEH
KaTap 3epTTeY KYMBICBIHBIH ©3€KTUIIr OOJIBIIT OTHIP.

byrinri Tapga xKadaT TUAPO KAPBUIBICHIH KYPri3y YIIiH, YMITKEp YHFbIMaHBI
TaHJay aWTapibIKTall YaKbITTBI KaXKeT €TETiH Mporecc OONbIm TaObUIaAbl. Y aKbIT
(GakTOpBl KOPCETIITeH YHFBIMAHBIH TEOJIOTHSIIBIK — TEXHOJOTHSUIBIK JKYMBICTaphI
KYPTi3UITeH OHJIPY TapUXbl, KEH OPHBIH TYTAacTall UTrepy oicCl, )KoHE Tarbl Ja O6acka
aKMmapaTThlH YJIKEH KOJIEMIH KapacThlpy TajdaObIMeH aHbIKTananbl. Jlambpiran
TEXHOJIOTHS - aKMapaTThIH €19yip KOJIEMIH Kelell Taaaayabl KaMTaMachl3 €Til KaHa
KOWMai, COHBIMEH KaTap TCOJIOTHSUIBIK KYypJell KOJUICKTOpjap YIIiH, JEPeKTepai
13716y KypaJIapbIHBIH KOFaphI carmaibl 00KaM/Ibl TYPIiH YChIHABI.
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INTRODUCTION

A distinctive feature of the oil industry of Kazakhstan is the presence of a
significant part of the developed fields at a late stage of development. Under
conditions of depletion of reserves, these fields are characterized by a drop in
production and high water cut. Therefore, the problem of improving efficiency
requires special attention, since the question of economic profitability remains open.
Currently, hydraulic fracturing is one of the most effective methods of intensifying
production. And the correct selection of an effective candidate well, in turn,
determines the success of hydraulic fracturing.

The practical application of this work is of increased importance directly at the
Uzen field, because it is not feasible to develop at this field without using methods
and technologies to increase the intensification of oil production, namely hydraulic
fracturing. In addition to the above, Uzen is the largest, multi-layer field, where more
than a hundred hydraulic fracturing operations are carried out annually. Since the
fund of existing wells is large, effective options are often overlooked when selecting
a candidate for hydraulic fracturing, and the company does not receive the possible
profit. The use of machine learning allows to significantly speed up the analysis of
information. The scientific novelty of the study lies in the simultaneous use of
modern approaches of machine learning and analysis of influencing parameters in the
task of optimizing the process of selecting a well for conducting a hydraulic
reservoir. As a result of the study, various machine learning algorithms were
considered and described to identify the best candidate for hydraulic fracturing. The
factors that mostly influence the process of well selection and their limitations for the
use of machine learning methods are determined.

The purpose of this research is to develop an algorithm for identifying the best
hydraulic fracturing candidate well based on a set list of parameters.

In accordance with the purpose of the study, the following tasks are set in the
work:

e Research and establishment of a list of criteria for the selection of candidate
wells for the Uzen field,

e Collecting data on wells where the hydraulic fracturing operation was
performed;

e Conducting a quality check of the data representing the subject of the study;

e Development and application of various machine learning algorithms to
identify the best candidate well;

e Conducting a comparative analysis and selecting the most successful model;

e Predicting production after hydraulic fracturing using the selected algorithm.

The object of the research is a sample of current production wells, where the

hydraulic fracturing process was carried out. The sample size of the study is one
hundred wells. The sample was carried out among wells 13, 14 horizons.

12



MAIN PART

1. THEORETICAL PART

1.1Tectonics and lithological-stratigraphic characteristics of the Uzen
field
The Uzen deposit is located in the steppe part of the Southern Mangyshlak and
Is administratively part of the Karakiyansky district of the Mangystau region of the
Republic of Kazakhstan.

Tectonically, the Uzen uplift is associated with the Zhetybai-Uzen tectonic
stage, which complicates the northern side of the South Mangyshlak trough
(Figurel). The region under consideration is part of the Turan Plate, which is part of
the Central Eurasian young Epigercin platform. In the section here, three structural
floors are distinguished, separated from each other by regional stratigraphic and
angular inconsistencies.

The Zhetybai-Uzen tectonic stage, being a second-order structural element, is
confined to the northern side of the South Mangyshlak trough and stretches from
north-west to south-east for 200 km with a stage width of about 40 km. From the
north, the stage is bounded by a regional fault that complicates the southern wing of
the Beke-Bashkuduk rampart, in the west it borders on the Segendyk depression and
the Karagiinsky saddle, and in the east-with the Kokumbai stage. The stage is
separated from the Zhazgurlinsky depression in the south by a deep fault of the
sublatitudinal strike, reflected in the platform cover by a flexure-like inflection

(Figure 1).

Along the sedimentary cover within the Zhetybai-Uzen stage, three anticline
lines are traced, oriented along the strike of the stage. From north to south, the most
elevated Uzen-Karamandybas, then Zhetybai, and the most submerged Tenge-
Tasbulat anticline lines are distinguished.

The largest local structure of the Zhetybai-Uzen stage is the Uzen uplift, which
Is a gentle anticlinal fold, the axis of which extends from east-southeast to west-
northwest.

13



H3waro, B cBA2I ¢ KOMMepUecKOi
TallHOII

Figure 1-Tectonic map of Mangyshlak: I-Mangyshlak dislocation system; I1-
South Mangyshlak trough; 11A-Zhetybai-Uzen stage; 11B-Kokumbai tectonic
Stage;

According to the roof 13 of the productive horizon, which is stratigraphically
related to the Kellovian stage of the Upper Jurassic, the size of the Uzen fold is 34.5 x
10.0 km, and the elevation amplitude is about 300 m. The morphology of the fold is
characterized by the asymmetry of the wings and periclinals. The northern wing is
flat (the angles of incidence of rocks are 30), and the southern wing is steeper with
angles of incidence of 5-60. The periclines of the structure are of different sizes: the
eastern one is shorter than the western one and, accordingly, the fold axis dips in the
eastern direction more sharply than in the western one. Within the more gentle
northern wing of the fold and its western pericline, the sinking of rocks occurs
unevenly with the formation of protruding areas. The shape of the fold and its spatial
position coincide in different stratigraphic horizons of the Jurassic and Cretaceous.
With depth, the amplitude of the rise and the angles of fall of the rocks on the wings
increase, which is explained by the inherited nature of its development.

The structure is complicated by six domes, most clearly traced in the lower
productive horizons: the Main Vault, the Humurun, Northwestern and Aksai,
Parsumurun and East Parsumurun domes.

Deep drilling at the Uzen field uncovered a sedimentary complex with a
thickness of 4500 m, in the structure of which rocks of Triassic, Jurassic, Cretaceous,
Paleogene, Neogene and Quaternary ages take part. Within the Uzen structure, deep
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drilling uncovered Lower Triassic deposits with a thickness of 698 to 2250 m,
represented by the Indian and Olenekian tiers.

Jurassic sediments, which are associated with the industrial oil and gas content
of the Uzen field, transgressingly lie on the eroded surface of the Triassic rock
complex. The Lower, middle and upper divisions of the Jurassic system are
distinguished by the results of the study of fauna, flora and data of spore-pollen
analysis. The Jurassic sediments are clearly divided into two complexes according to
their lithological composition: the terrigenous complex of rocks of the Lower and
Middle Jurassic and the carbonate complex of the Upper Jurassic. The
undifferentiated deposits of the Lower Jurassic are represented by the interbedding of
sandstones, siltstones, argellite-like black carbonaceous clays with organic plant
remains and coal inclusions.

Productive deposits of the 13-18 horizons of the Uzen deposit are represented
by an uneven alternation of terrigenous rocks — sandstones, siltstones, clays and
transitional lithological differences between them. Among them there are thin layers
of limestones, marls, siderite, coals, and accumulations of charred plant detritus. In
the calcareous differences of siltstones and clays, cores, fragments and impressions of
bivalve shells are often found, sometimes small aggregations of pyrite.

1.2 Structure of oil and gas deposits of the considered horizons

A characteristic feature of the productive strata of the 13-18 horizons is a high
heterogeneity, which is expressed in the complex nature of the distribution of
reservoir layers over the area and section of the field and the significant variability of
their filtration and reservoir properties.

Along with a fairly confident correlation not only of the horizons, but also of
individual bundles within the entire Uzen structure, there are significant differences
in the number and volume of deposits installed on different domes, which is
associated with the complex nature of the distribution of reservoir layers within the
bundles and horizons.

The porosity of productive reservoir rocks varies from 14.0% (lower limit) to
41.7% (horizon 13). The tendency to decrease porosity from top to bottom along the
section of the productive strata, despite some deviations due to the lithological
heterogeneity of layers and bundles, is maintained quite clearly. The permeability of
productive reservoirs of all bundles in the composition of 13-18 horizons varies in
extremely wide ranges — from 0.001 to 7.301 mD (14 horizon).
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Horizon 13

Within the horizon, the thickness of which varies from 40 to 56 m, 12 sand-
siltstone layers are traced, united according to the accepted scheme of dividing the
productive section into 5 bundles (Figure 2). Large reservoir thicknesses are not
characteristic of this horizon and, in addition to the sand lens that can be traced
through the listed blocks, they occur over the area of the deposit in small areas,
without affecting the general idea of the structure of the horizon as the most
heterogeneous in the Jurassic productive section of the Uzen deposit.

H3waTo, B CBA3I ¢ KOMMepUIeCcKO
TallHOII

Figure 2-Geological and statistical cross-section of the horizon 13

The water-oil zones on each deposit of the thirteenth horizon, having a small
width, are characterized by the development of reservoirs of small thickness.
Therefore, a limited number of production wells were drilled in this zone, usually
injection wells, and only a few wells were tested before the start of water injection to
determine the nature of reservoir saturation.
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Horizon 14

The horizon is separated from the overlying horizon 13 by a well-maintained
clay section in thickness and area. The thickness of the horizon varies from 60 m in
the east to 80 m in the west of the structure. However, the decrease in thickness from
west to east does not affect the structure of the horizon as a whole, within which 15
sand-siltstone layers were identified as a result of detailed reservoir correlation

(Figure 3).

H3waT0, B CBA3I ¢ KOMMEPUeCKO
TallHOII

Figure 3-Geological and statistical cross-section of the horizon 14

1.3 A Dbrief overview of the application of machine learning in the
process of selecting candidates for hydraulic fracturing.

Currently, the application areas of machine learning are expanding every day.
This branch of artificial intelligence is widespread not only in industry, trade, various
sectors of the economy, but also in everyday life. Machine learning is an extensive
sub-division of artificial intelligence, the methodology of which is that the computer
does not just use a pre-written algorithm, but learns how to solve a set problem.
Machine learning quickly automates the process of creating an analytical model, and
also allows computers to independently adapt to new scenarios.
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The oil and gas industry is the largest source for big data, therefore, the use of
machine learning algorithms in this area, first of all, optimizes the economic
component of the company. In the oil industry, the range of algorithms used is wide:
the choice of the field development option, the calculation of reserves, the calculation
of the expected flow rate after the intensification of production, the assessment of
filtration and reservoir properties, and more. The hydraulic fracturing process is not
an exception to the above list.

Hydraulic fracturing is one of the most common and effective methods for
increasing oil production of reservoirs. The increase in hydraulic fracturing
operations in recent years has led to the formation of huge amounts of data. As a
result, the ability to implement machine learning in the hydraulic fracturing process
in order to improve results has also increased. The process of selecting a candidate
well is the first and result-determining step in the implementation of the hydraulic
fracturing process. The use of artificial intelligence algorithms in selecting the
desired target well reveals the potential of research, revealing the relationship
between the impact factors. In general, there is no traditional, generally accepted
methodology for applying machine learning to the process of selecting wells for
hydraulic fracturing. The development of a methodology for the rapid selection of
wells for hydraulic fracturing based on machine learning is presented in the paper
(Akhmetov A., 2018). The authors developed a machine learning model based on
neural networks to estimate the average annual level of oil production after hydraulic
fracturing treatment. Based on the selected model, forecasts are made for other wells
that are potential for hydraulic fracturing applications. There is a growing body of
research around the world focused on applying big data analysis to the problem of
hydraulic fracturing optimization. The use of advanced techniques, such as artificial
neural networks, significantly reduces the uncertainty in the selection of candidate
wells (Aryanto Agus, 2017). Non-linearity is the main advantage of neural networks,
as a nonlinear relationship between the predicted and actual process parameters is
established. In the above work, the relationship between the input and output data set
Is determined to reveal the optimal distribution of the membership function, which
allows for more efficient prediction of candidate selection and fracture optimization.
The paper (Alimkhanov R., 2014) presents a methodology for selecting wells for
hydraulic fracturing operations using Data Mining tools. The impact of various
geological and field conditions on the efficiency of hydraulic treatment of the
reservoir was also assessed. Classification models have been developed to divide
potential candidates into groups: effective and ineffective. In addition to the above,
the authors have proposed regression models for predicting the flow rate and water
cut after hydraulic fracturing. A recent study (Vanina A. S., 2020), containing a
sample of 5,000 wells, presents a detailed process for optimizing hydraulic fracturing
design. The input parameters are divided into reservoir, well, and design parameters
of the hydraulic fracturing design. The estimated parameter is the three-month
cumulative oil production. As a machine learning tool, several boosting algorithms
are used and compared. Testing of the developed methodology for pilot wells shows
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the effectiveness of the developed approach. Traditional methods of well selection for
hydraulic fracturing do not take into account all the non-linearity of the process. The
results of research and the experience of recent years have shown us the possibility of
implementing machine learning in the process of analyzing and predicting hydraulic
fracturing operations.

1.4 Parameters and their influence on candidate-well selection for hydraulic
fracturing.

The selection of a suitable candidate for hydraulic fracturing determines the
ultimate success of the entire process. This process is the first stage in hydraulic
fracturing operations (Figure 4). The use of machine learning to identify the impact
of a number of parameters on the volume of production after a fracking operation is a
powerful tool, as it leads to an integrated approach.

ANALYSIS
Analysis of flow rate gains
04 Technical success analysis
step Analysis of economic success
Technology search and

recommendations

' I I F . PERFORMING

HYDRAULIC HYDRADLIC

FRACTURING
FRACTURING DESIGN Monitoring and maintenance
Technology selection Minifrac and Re-design
Hydraulic fracturing design Hydraulic fracturing
Agreement Quality control

Laboratory tests Report

PLANNING
Selection of candidate wells
Calculation of planned flow rate
Calculation of Pl
Well data analysis

Figure 4- Block diagram showing the stages of hydraulic fracturing operations

In practice, a table with a list of parameters and their boundary values is used
to select a candidate. For example, the water content of the candidate well should not
exceed 50%, or the effective oil-saturated thickness should not be less than 0.8 m
(Caymmmon O.B., 2017). Using the threshold methodology, a large number of effective
candidates are overlooked, due to the fact that they are not suitable only for a certain
parameter. The presence of errors in the methodology of threshold values: 1-a well
that does not meet the criteria, but the hydraulic fracturing on it will be effective; 2-a
well that meets the criteria, but the hydraulic fracturing on it will be ineffective,
because the use of other approaches in the selection of candidate wells (Camumos
O.B., 2017). The criteria that are taken into account when selecting candidates for
hydraulic fracturing in this study will be discussed below. In the future, the
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relationship between the influences of the selected criteria on the flow rate after
hydraulic fracturing is revealed. This procedure is applied to wells 13, 14 horizons of
the Uzen field.

Parameters that affect the selection of a candidate well:

Net Pay Thickness. According to Darcy's law, as the effective thickness of the
reservoir increases, the oil flow rate increases proportionally. Because the main
purpose of production intensification is to increase profits by increasing production
volumes, the economy is the driving force in deciding which well is most suitable for
carrying out the inflow intensification. Since the hydraulic formation operation is
relatively resource-intensive, the best candidate wells must have significant volumes
of hydrocarbons. Following this point of view, large values of the oil-saturated
thickness are preferred.

Reservoir permeability. This parameter refers to the petrophysical properties of
the intervals. In the field under consideration, wells with moderate and relatively high
permeability have good production indicators, therefore, do not belong to potential
candidates. When conducting hydraulic fracturing, as a rule, wells with low
permeability are considered as an effective candidate.

Reservoir pressure. Effective candidates for hydraulic fracturing are wells with
a smaller drop in reservoir pressure relative to the initial one. Low reservoir pressure
at wells during hydraulic fracturing is the reason for the failure to achieve the planned
flow rate. In this study, the ratio of the current reservoir pressure to the initial
pressure is taken as a parameter that estimates the reservoir pressure. This is due to
the fact that the sample was made from two horizons with different initial reservoir
pressures. For non-perforated objects, you must specify the primary reservoir
pressure or the results in neighboring wells.

Water Cut. A distinctive feature of the Uzen deposit is the high degree of water
cut of the layers. In this regard, during the hydraulic fracturing operation, candidates
with critical water cut values are not neglected. However, lower values of the degree
of water cut are preferable, since the share of oil in the extracted liquid will be higher.

Oil rate. Wells with a low oil flow rate prior to fracking are also suitable
candidates. Because as a result of the intensification under consideration, the oil flow
rate increases, therefore, the value of the productivity index increases, showing the
potential and ability of the well to produce products.

Distance to the nearest production well. When conducting hydraulic
fracturing in a field drilled on a dense grid, working oil wells can interact. The reason
Is the interference of wells, which leads to the economic inexpediency of the
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hydraulic fracturing process. Wells with long distances to neighboring wells are
preferred. The minimum and maximum distances to the producing well are 94 and
881m, respectively.

Distance to the nearest injection well. The breakthrough of the injected water
Is also the reason for the failure to achieve the predicted flow rate. The optimal
fracture length ensures the efficiency of the hydraulic fracturing process, but it is
necessary to take into account the radius of the well drainage zone and the proximity
of the injection wells. According to the data sample, the minimum and maximum
distance to the nearest injection well is 152 and 1194 m, respectively.

New planned fracturing interval. The considered horizons of the Uzen
deposit are characterized by an inhomogeneous structure of productive layers. Oil-
saturated layers are an alternation of permeable sandy and impermeable clay layers,
which indicates a high degree of dissection of the layers. Hydraulic fracturing under
these conditions increases oil recovery, due to the involvement in the development of
oil reserves in heterogeneous and dismembered reservoirs. The possibility of
additional perforation is highlighted as a parameter taken into account when selecting
a candidate for hydraulic fracturing.

The success of hydraulic fracturing is primarily determined by the selection of
a suitable candidate well. The most important parameters for selecting a candidate for
hydraulic fracturing, considered in this study, are presented in table 1. As a source of
information, various sources were used to create a database of potential candidates
for the specified parameters. To determine the distance to the nearest production and
injection wells, we have mastered the work on the NGT Smart computer program.
The information system "Geographically distributed data bank™ (TBD) is a resource
of information on the remaining criteria.
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Table 1- Criteria affecting the selection of candidates for hydraulic

fracturing
Source of
Parameter Units Effect information
Additional TBD-Perforation
perforation Qualitative | Positive | intervals
TBD-Perforation
Net Pay Thickness [m] Positive | intervals

Reservoir pressure | [atm/atm] | Positive | TBD-Well test

Permeability [mD] Negative | TBD-Well test
TBD-Operational
Oil rate [t/day] | Negative | parameters
TBD-Operational
Water Cut [%] Negative | parameters
Distance to IW [m] Positive | NGT Smart
Distance to PW [m] Positive | NGT Smart

The main purpose of the TBD is to create a single field of geological,
geophysical and field information for decision-making. The TBD system operates in
real time. For example, the indications of water cut and oil flow rate before hydraulic
fracturing are determined from operational data on liquid production. The values of
permeability and reservoir pressure are contained in hydrodynamic studies (the
method of steady-state sampling, buildup, etc.). Data on additional perforation and
effective intervals are determined from the reporting documentation.

1.5 Summary of Chapter 1

This chapter discusses the theoretical aspects of this study. Uzen is one of the
largest deposits on the territory of our country. The geological structure and
heterogeneity of the reservoirs, the high water content of the reservoirs cause a
complicated process of oil production. The use of various methods of inflow
intensification in this field is not just a frequent practice, but a necessity. The huge
fund of existing wells and various reasons for not achieving the planned indicators
during hydraulic fracturing determine the relevance of research in this area.

The current economic situation dictates new realities and conditions for oil
production. The use of machine learning in the oil industry is one of the priorities, as
it guarantees an increase in the productivity and efficiency of the technologies used.
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The introduction of machine learning algorithms in the process of selecting wells for
hydraulic fracturing operations provides accelerated analysis of a large amount of
data and the ability to achieve a high level of economic efficiency of the hydraulic
fracturing process.

The selection of candidates requires the integration of various sectors, such as
geology, reservoir engineering, petrophysics, manufacturing, geomechanics, and
stimulation engineering. According to the practice of hydraulic fracturing, there is a
contradiction in the methodology used for selecting candidate wells. Each method
requires a careful approach, characterized by its own disadvantages and advantages.
The Uzen deposits are multi— layered and heterogeneous, so 13, 14 horizons were
chosen as the object of research. Because the qualitative results are the result of a
detailed approach.

The first chapter also considers the significance of the parameters that are taken
into account in this study as factors affecting the flow rate after hydraulic fracturing.
The selection of an effective candidate for hydraulic fracturing ensures that the
economic aspects of the operation are met and that it is economically viable.
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2. TECHNICAL DESCRIPTION OF THE PROJECT

The presented research is aimed at identifying an effective candidate for
conducting the hydraulic fracturing process using machine learning.

The step-by-step scheme of the study is shown in Figure 5. This chapter will
cover the stages of data collection, data analysis, and algorithm modeling.

DATA PREPARATION MODELING ALGORITHMS

Linear regression

Literature Review

Lasso regression

Comparative
analysis of
algorithms

Approving
parameters

Ridge regression

Polynomial
regression

Random Forest

Production
forecast

Data
collection

Data quality check

Ensemble

Figure 5- Flowchart of research

The code for the developed models is written in the Jupyter notebook
interactive computing environment based on Python. Python is one of the most
common high-level object-oriented programming languages. Its popularity is due to
its simple syntax, portability, and the most commonly used functions from the
standard library. Classical numerical solution algorithms are implemented in
packages used in scientific computing-numpy, scipy, matplotlib, and sympy. The
possibilities of implementing two-dimensional and three-dimensional data are
implemented using the matplotlib package. The basis of the NumPy and SciPy
packages is numerical calculations, but also symbolic calculations. In the present
study, the Scikit-learn package is the most powerful and widely used, as it provides a
variety of algorithms. With the use of this package, preprocessing of data, changing
the dimensions of variables, and cluster analysis were carried out.
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2.1 Data: collection, preparation, quality check, analysis

Data collection. One of the most important tasks of this research is the
formation of a database of qualitative data for machine learning algorithms. The use
of low-quality data leads to problems associated with data preprocessing and
overestimated performance error.

The generated database is presented in the form of processed and structured
information in tabular form. The objects are the rows of this table - the wells on
which hydraulic fracturing was carried out. And the columns represent the parameters
under consideration. Therefore, the average oil flow rate after the application of
geological and technical measures is a dependent variable on predictors (influencing
parameters). The number of rows corresponds to the number of wells (100), the
number of columns-10.
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Figure 6-Two-dimensional data table-DataFrame (Jupyter notebook)

Data preparation. The data preparation process is necessary for the subsequent
analysis of the information using machine learning algorithms. Data cleaning, data
cleansing, or scrubbing is all about data mining - the stage in which the process of
identifying and removing inconsistencies in data is carried out. Incorrect conclusions,
inadequate statistics are the result of incorrect, duplicate and lost information. In this
regard, data cleaning is an integral procedure when using machine learning
algorithms.

Data preparation is the process of converting the source data into a form
suitable for modeling. Machine learning algorithms require the input data to be
numbers. Therefore, if the data contains values that are not numbers, you will need to
change this data to numbers.
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Data columns (total 12 columns):

# Column Non-Null Count Dtype
e Count 12@ non-null inte4
1 Well name 100 non-null inté4

2 New planned fracturing interval
160 non-null inté4

3 Net pay thickness 182 non-null floaté6d
4 P.c/P_i 188 non-null floated
S Water cut 1@ non-null floatéd
& 0il rate 19@ non-null floated
7 Permeability 190 non-null floatéd
8 Injection well 160 non-null inte4

9 Producing well 16@ non-null inte4

10 Achievement of an increase in production rate 180 non-null floated
11 Flow rate after HF 108 non-null floatéd

dtypes: float64(7), int64(5)

Figure 7- Output of the type of values in the data set.

Data quality. Using info () , it is observed that the data type in the sample in
question is integer or float. No null values were found in the data set either. Using the
describe () method, you can get a statistical analysis of the data set. The statistical
summary of the input variables shows that each variable has a very different scale

(Figure 8).

New planned

fracturing tn'NEt PY  pePi Watercst  Oilrate Permeability '“i““"ﬂ P’°““°‘"ﬁ
intervalin ickness we e

count 100.000000  100.00000 100.000000 100.000000 100.000000  100.000000  100.000000 100.000000
mean 0420000 1381700 1063130 58845000  3.838900  10.324333 410.300000 263360000
std 0496045 451261 0142516 23686318  9.169528 5342579  161.803896 126.006455
min  (0.000000 2.90000 0733529  2.000000  0.000000 1.600000 152.000000  94.000000
25% 0000000 1075000  0.981917 40.000000  0.992300 6.622000 286.250000 193.000000
50% 0000000  13.00000  1.040207 60.000000  2.005000 9690000 396.500000 228.000000
75%  1.000000 1660000 1146918 74582500  3.897500 12650000 480.750000 285.500000
max 1000000  29.30000  1.672405 100000000 65.000000  33.800000 1194.000000 681.000000

Figure 8-Output of the statistical summary of the dataset

A histogram is created for each input variable. The output graphs confirm a
different range for each input variable and show that the variables have different
scales.
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Figure 9- Histogram plots of input variables

Data quality is a multidimensional thing. The data must be simultaneously
accessible, accurate, coherent, complete, consistent, defined, and relevant. A larger
amount of the time resource of this study is based on the collection and preparation of
data, because high — quality data is the key to a high-quality result.

Data analysis. Data analysis is a prior step before applying algorithms. The
data analysis carried out in this study is divided into two sections. First of all, we will
study the sample of wells from the point of view of bias and objectivity. The purpose
of this analysis is to prove that the author was objective when making the selection.
This means that the sampling of wells should have both positive and negative results
after hydraulic fracturing.

Let's analyze the statistics of oil flow rate after hydraulic fracturing, because
this variable is the target. A numerical explanation of the figure below is provided in
Table 2.
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Flow rate after HF | |
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Flow rate after HF, tiday

Figure 10- Sample box plot: flow rate after hydraulic fracturing

A span chart is a tool for representing numerical data in terms of quartiles. The
"whiskers" represent straight lines coming out of the box, they are necessary to
visualize the degree of spread (variance) beyond the upper and lower quartiles. This
descriptive statistics tool allows you to quickly and efficiently explore data sets.

Figure 10 shows a diagram of the oil flow rate after the intensification of the
sample under consideration. According to the figure, the average oil flow rate is 11.4
t/day, the minimum — 3.5 t/day, the maximum-19.8 t / day.

Table 2- Sample statistics: flow rate after hydraulic fracturing

Statistics | Value, [t/d]
mean 11,403
std 4,148667
min 3,5
25% 8,175
50% 11,25
75% 14,625
max 19,8

Figure 11 shows the sample density graph, which is a graphical tool for
distributing data over a certain time interval. This type of visualization is a
modification of the histogram, where nuclear smoothing is used to display the values,
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which allows displaying a smoother distribution. According to the analysis, it
becomes clear that in the data sample under consideration, most wells produce an oil
inflow after hydraulic fracturing from 9 to 12 tons/day. The green line corresponds to
the average oil flow rate, and the red line corresponds to the median (Eigure 11).
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Figure 11- Sample density plot: flow rate after hydraulic fracturing

For the next stage of data sampling analysis, it is necessary to divide the wells
into classes based on water cut. The classification is carried out according to the
following limit values of water cut classes (Figure 12):

e Low-watered wells (0-40%) -21;
e Medium watered wells (40-80%) -50;
e High-watered wells (80-100%) -29.

Medium-watered

WC_group

Low waterad

Highly-watered

Figure 12- Classification of wells by water cut parameter
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As mentioned earlier, at the Uzen field, the problem of water cut is the most
common during hydraulic fracturing. The figure below shows the statistics of oil flow
rate after intensification relative to the water cut groups.
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Figure 13- Box sample diagram: oil flow rate by water cut class

It should be noted that low-water wells have the highest oil inflow, which is
expected. However, high-watered wells produce an average of 12 t / day compared to
10 t/day of medium-watered wells. This phenomenon is explained by the size of the
sample by water cut classes and the possibility of carrying out repair and insulation
work before hydraulic fracturing.

In order to argue for the objectivity of the sample of wells, it is necessary to
conduct a comparative analysis with wells that have been fractured during the last
three years (2020/19/18).

Table 3- Statistics of flow rate after HF: comparative analysis

Statistics mean std min 25% 50% 75% max | count

Sample, [t/d] |11.403|4.1487| 3.5 | 8.175 | 11.25 | 14.625| 19.8 100

2020, [t/d] 10.7 | 4966 | 0.7 7.3 10.7 | 14.85 | 25.7 110

2019, [t/d] 11.609 | 54797 | 0.7 | 7.575 | 11.35 | 14.875| 29.6 122

2018, [t/d] 11.059| 6.454 | 0.1 6.9 10.7 | 146 | 39.4 145
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Table 3 presents a statistical analysis of the oil flow rate after hydraulic
fracturing over the past three years at the Uzen field.

Flow rate after HF I |
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Figure 14- Box plot (2020/19/18): flow rate after hydraulic fracturing

Based on the comparative analysis, it can be argued that the average oil flow
rate after hydraulic fracturing is in a small range of changes in the flow rate (10.7-
11.6 t / day) for all hydraulic fracturing operations in a time period of three years. It
should also be noted that there are significant deviations in the maximum flow rate
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for 2018. When studying the graph of the well flow rate density for the years under
consideration, it becomes clear that the most frequent increase is also as close as
possible to the sample produced (Appendix B).

Table 4- Distribution of wells by water content groups: comparative analysis

Group Low Medium- Highly-

watered watered watered
Sample 21 50 29
2020 11 67 32
2019 7 78 39
2018 10 85 50

According to the above table, the sample corresponds to the hydraulic
fracturing carried out over the past three years, according to the numerical
distribution relative to the water cut classes. The conducted data analysis allows us to
state that the data sample of 100 wells is absolutely random and objective in relation
to the majority of hydraulic fracturing operations conducted in 2020/19/18 at the
Uzen field.

Previously, the analysis of the target variable was carried out, then the data
analysis will be presented, based on the parameters that affect the oil flow rate after
hydraulic fracturing. Data science looks at the relationships between two or more
variables in a particular data set. The purpose of correlation analysis is to determine
the degree of connection between the random variables under consideration. This
type of analysis allows measuring the degree of connectivity of two or more
phenomena, to detect unknown causes of connections, etc. A relationship is called a
correlation if each value of a factor attribute corresponds to a well-defined non-
random value of the resulting attribute. The linear correlation coefficient is a tool that
evaluates the degree of closeness of this relationship.

In the area of machine learning, the correlation of independent variables is
called multicollinearity. This phenomenon is undesirable for the data set, as it makes
it difficult to analyze and evaluate the final result. The retraining of the model is a
consequence of the manifestation of the multicollinear system. In addition, redundant
coefficients increase the complexity of the machine learning model, hence the
training time increases. Also, when using a multiple regression model, the
interpretation of the parameters becomes more complicated - the regression
parameters lose their meaning. The final result is large standard errors, and the
regression model will not be applicable for forecasting.

The correlation matrix is used as a tool for estimating the degree of correlation
of parameters (Figure 15).
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Figure 15- Correlation matrix of parameters

According to the above figure, each cell of the correlation matrix is a
"correlation coefficient” between two variables corresponding to the row and column
of the cell. The correlation coefficient for each pair of parameters is shown in Figure

16.

New planned fracturing Net pay Iinjection Producing

S— % PcPi Watercut Oifrate Permeability e s

New planned "“";2 1 000000 0050928 DO79235 0132247 (140009  QO473G OO74417  DOTIST
Net pay thickness 0050008 1000000 0028300 -0000367 009676 0097130 0005768 0056699
PcP | 0079236 0028300 1000000 0040070 0085445 005319 0135716  -0013860

Water cut 0 132247 0000367 0040070 1000000 0357133 0000265 0050562 0066226

Oil rate 3140008 0009676 005445 03ISTIN3 1000000  OI70577 096102 -0 102380

Permeability 0047380 0097138 005311 00CO285 0170577 1000000 0175264 0032114

Injection weil 2074417 0005768 0935716 0050552 0308102 0175284 1000000 0100103
Producing well 0071571 0056688 0016805 0086226 -0 102380 D021 0 108103 1 000000

Figure 16- Output of the numerical expression of the correlation matrix
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The Pearson coefficient is a coefficient defined as the covariance between two
variables divided by the product of the standard deviations of these two variables.

COV(X,Y) o

p(X,Y) =
Ox * Oy

The value p(X, Y)lies in the range [-1 ; 1]. Values close to +1 indicate a strong
positive relationship between X and Y, while values close to -1 indicate a strong
negative relationship between X and Y. Values close to zero indicate that there is no
relationship between X and Y. Each cell in the matrix above is also represented by
shades of color. Here, red shades of color indicate a negative correlation, while blue
shades correspond to a positive correlation. According to the above analysis, no
critically correlated data were found. Therefore, for the further application of
machine learning algorithms, the previously considered list of influencing parameters
Is approved.

2.2 Development of models for predicting the flow rate after hydraulic
fracturing

The development of a model for predicting the flow rate after a hydraulic
fracturing operation is based on a machine learning algorithm. In this study, the code
contains an algorithm for finding solutions independently through the integrated use
of statistical data. Further, certain patterns are identified, on the basis of which the
flow rate after hydraulic fracturing is predicted for potential candidates.

The main problem of machine learning is that today there is no single flexible
algorithm applicable to any data sample, regardless of the optimization industry. In
addition to the above, it should be noted that different types of algorithms have a
different degree of efficiency of the result. For example, you can't say that decision
trees work better than neural networks in all cases, and vice versa. The structure and
size of the data set largely determine the success of the type of algorithm used. For
this reason, during the research work, a number of algorithms were used to identify
the most efficient and suitable for the existing data sample.

Machine learning algorithms can be described as learning the objective
function f that best matches the input variables X and the output variable Y: Y = f(X).
The most common task in machine learning is to predict Y values for new X values.
This is called predictive modeling, which aims to make the most accurate prediction
possible. Next, we will consider the algorithms used in this study to predict the oil
flow rate after hydraulic fracturing.
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2.2.1 Regression Algorithms: Linear regression

The most basic and fundamental algorithm used to identify the relationship
between a dependent variable and one or more independent variables is linear
regression. This algorithm is focused on finding the "best match line". The best match
line is found by minimizing the squared distances between the points and the best
match line.

® Actual response, y; ,
B Predicted response, f(x,) = by + by x,
—— Estimated regression line, fix)=by + byx

=== Residuals, y,— f(x)

X

Figure 17- One-dimensional linear regression model [7]

In this study, multiple regression is considered, because the predicted flow rate
after hydraulic fracturing depends on several independent variables (factors discussed
In the first chapter). The equation below represents a linear regression model:

Yy = Bo + Bix1 + Boxz + o+ Prxy )

where,
X1, Xy, X, — Sets of input values;
y — model output data;

Bo, b1, Bn — coefficients of a linear equation.
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2.2.2 Regularization Algorithms: Least Absolute Shrinkage and Selection
Operator

Linear regression is unstable if it shows an overestimated degree of
dependence on training data, which usually leads to the phenomenon of overfitting.
The use of the regularization method avoids the consequences of an unstable model.
Regularization is based on the imposition of additional constraints on the initial
parameters, which prevent excessive complexity of the model. The LASSO
regression model uses coefficient compression, meaning that the data approaches the
mean value.

The introduction of an additional regularization term in the optimization
functional of the model determines the effectiveness of the LASSO regression
method. The following formula expresses the condition for minimizing the squared
error in parameter estimation:

C ©)
p = z(Ytrue - Ypred)z + Az IB; |
i=1

where,
A- regularization parameter that has the meaning of a penalty for complexity.

In this case, a certain compromise is reached between the regression error and
the dimension of the used feature space, expressed by the sum of the absolute values
of the coefficients 1B; I. During minimization, some coefficients become equal to
zero, which, in fact, determines the selection of informative features. This
compression process allows you to get the most stable and accurate estimates of the
true parameters. In LASSO regression, instead of taking the square of each
coefficient, their absolute values are taken.

2.2.3 Regularization Algorithms: Ridge regression

Ridge regression, like LASSO regression, is a modification of linear
regression. The similarity of Lasso regression to ridge regression is the application of
the compression process in both cases. Both algorithms are used with a high degree
of efficiency to sample data with a large number of influencing features, the
correlation of which can lead to a multicollinear system. However, the main
difference in these types of regression is that in Ridge regression, none of the
coefficients becomes zero, which can be observed in LASSO regression. Let’s look at
the cost function of Ridge:
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C ()
:BR = z(Ytrue - Ypred)z + A x Z ﬁiz
i=1

Using Ridge regression avoids the effect of over fitting with lower coefficients.
Lambda (A1) is a constant, hence it has the same scaling effect on all coefficients.
Regression Ridge has a detailed approach, as it allows you to make important
features more pronounced and reduce the influence of factors that have the least
effect. This is because when squaring a larger number, the result is an even larger
number. On the contrary, if you select a low value (for example, 0.01), the result will
decrease significantly. But when squaring numbers less than one, and then
multiplying it by 0.01, we get an even smaller result. Thus, this algorithm works
perfectly even with a high degree of correlation of influencing factors. Since the
influence of all factors is taken into account, but the coefficients are distributed
among the factors depending on the correlation.

2.2.4 Polynomial regression

The polynomial regression is a special case of the previously considered linear
regression. The polynomial regression algorithm models the relationship between the
independent variable (x) and the dependent variable (y) as an n-th degree polynomial.
The main equation of the polynomial regression is given below:

y = bo + b1x1 + bzXf + -4 anIl (5)

Polynomial regression is perfectly applicable to a data set that is characterized
by non-linearity. Because using a linear model to the above data set will increase the
loss function, increase the error rate, and therefore decrease the accuracy of the result.
However, the presence of one or two outliers has a significant impact on the results of
the power analysis. This means that the polynomial regression is very sensitive to
outliers. This type of regression is often used in mathematical statistics when
modeling the trend components of time series.

2.2.5 Random Forest Regression

The Random Forest algorithm is one of the most common algorithms used in
machine learning. This is due to its versatility: the algorithm is applicable in solving
problems of classification, regression, anomaly search, clustering, etc. A random
forest is a collection of a certain number of decision trees. This means that trees
constructed "randomly” make up a Random forest. Each tree is formed from a
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selection of rows, and a different selection of objects is selected at each node for
partitioning. Each of the "random™ trees models its own individual prediction.
Further, the available forecasts are averaged to obtain a single, more accurate result.
The figure below shows the structure of the Random Forest algorithm.

Test Sample Input
il

Tree 1 Tree 2 \ Tree 606
s/ 4 ! S/ I A

| Prediction 600

Average All Predictions

v

Random Forest
Prediction

Figure 18- Structure of a Random Forest Regression [8]

2.2.6 Ensemble method

To date, the methods of ensembling are powerful tools that are most often used
in machine learning. The popularity and high degree of effectiveness is explained by
the assumption that combining several models together leads to the creation of a
much more powerful model. Getting the best prediction performance is the main goal
of any machine learning algorithm. Thus, an ensemble of methods improves the
prediction result by using several training algorithms. The flexibility of ensemble
methods is provided by a larger number of parameters than individual models of
algorithms. It should also be noted that with the ensemble method, it is important to
synthesize distinctive models, because if similar algorithms are combined, the error
Increases.

It should be noted that in the case of ensembling, the numeric input variables
change the scale to the standard range. When using the standardization function, each
source variable is scaled individually, subtracting the mean (called centering) and
dividing by the standard deviation to shift the distribution to produce a zero mean and
a unit standard deviation.

In this study, eight factors influence the forecast flow rate after hydraulic
fracturing. Including more features does not always improve the performance of the
algorithm. The principal components method solves this problem by reducing the
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dimension of the feature data space. The data set in question, like any data sample,
contains noise. The phenomenon of model over fitting is a consequence of the
presence of data noise. Using the principal components method avoids this problem.
It is assumed that the variance of the noise is small relative to the variance of the data
itself, and after converting the data by the principal component method, the
transformed data (components) whose variances are small will be considered noise.
They can be safely excluded from subsequent training, assuming that the quality of
the training model, at least, will not decrease.

0200 1

0175 -

0.150

0125 1

0100 4

Variance %

0075 1

0.050 1

0025 1

0.000 -

PCA fearures

Figure 19- Output principal component analysis-variance reduction

Principal component analysis (PCA) is an exploratory approach to reducing the
dimension of a data set, in this case to 2D, used in exploratory data analysis to create
predictive models. This method focuses on finding an orthonormal basis for data,
sorting measurements in order of importance, and excluding low-significance
measurements. The PCA method is described by the eigenvectors and eigenvalues of
the covariance matrix. The eigenvectors (principal components) determine the
direction of the new attribute space, and the eigenvalues determine its magnitude.
Reducing the dimension of the data leads to their projection into a smaller subspace,
where the eigenvectors form the axes (Figure 20). The figure below shows the
process of changing an eight-dimensional space to a two-dimensional space.
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PCAL

Figure 20- Decorrelation of a new feature space

Next, we use the k-means implementation of clustering, which is a machine
learning method that identifies clusters of data objects in a data set. In general,
clustering involves dividing data into groups (clusters). Clusters are defined as groups
that are more similar to other objects in their cluster than to data objects in other
clusters. The main element of the algorithm works based on the process of
maximizing expectations. The waiting step assigns each data point its nearest
centroid. Then, at the maximization stage, the average value of all points for each
cluster is calculated and a new centroid is set. The quality of the defined clusters is
based on calculating the sum of squared errors (SSE) after the centroids converge or
coincide with the destination of the previous iteration. SSE is defined as the sum of
the squared Euclidean distances of each point to its nearest centroid. Since this is a
measure of error, the goal of k-means is to try to minimize this value (Figure 21). The
appendix provides an example of binding a sample of data, namely each well, to a
specific cluster.

After clustering, a Random Forest regression is applied to the selected number
of clusters. And then the forecast of oil production after the hydraulic fracturing
operation is modeled.
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Figure 21- Determination of the elbow point

2.3 Summary of Chapter 2

There's no such thing as a free lunch. The main idea of this expression in the
key of this study is that there is no single flexible algorithm for any data set,
regardless of the industry of the problem being solved. But this is the whole point of
interest: finding the most suitable algorithm model for the problem under
consideration.

The linear regression algorithm is the simplest, but it has good performance.
However, restrictions on the freedom of maneuver are the reason for the low
frequency of applying this algorithm to real data. To a greater extent, the linear
regression model is used as a base model for comparison with other machine learning
algorithms.

Problems related to the phenomenon of overfitting and bias are solved using
Ridge and LASSO regression. LASSO regression allows to exclude features that
have little effect on the prediction of production.

When solving a complex forecasting problem, a common case is that the use of
any of the algorithms does not provide the desired quality of dependency recovery. In
such cases, there is the creation of a composition of algorithms, namely, the use of
the method of ensembles of models. Due to the fact that this study considers a
relatively massive data set, the inclusion of the principal components and clustering
method in the modeling helps to avoid the influence of data noise and the
phenomenon of multicollinearity by reducing the data dimension.
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DISCUSSION

3.1 Selection and analysis of algorithm quality metrics

In the second chapter, we discussed the various types of algorithms that were
used in this study to predict the flow rate of oil after a hydraulic fracturing operation.
The comparison of the results is an integral part of the entire modeling process, this
process is carried out on the basis of the selected metric. The choice of a suitable
evaluation system-metrics - has an impact on how the performance of machine
learning algorithms is measured and compared. And the most important point is that
the metric influences the final choice of the working algorithm for the problem being
solved.

In this study, we consider the problem of predictive modeling, which results in
the prediction of a numerical value. This type of task is fundamentally different from
classification tasks, which involve predicting the class label. Therefore, using
classification accuracy to evaluate forecasts is incompetent. This leads to the fact that
it is necessary to use the error indicators developed for regression models. As |
mentioned earlier, predictive modeling is a task that is solved using historical data to
predict new data. Predictive modeling can be described as a mathematical problem of
approximating the function of mapping input variables to output variables. Therefore,
in this case, it is impossible to assess the accuracy of the developed models. The
performance of the regression model is characterized by the approximation of
forecasts to their expected values.

The most common quality measures in regression problems are the following
errors:

e Mean absolute error (MAE);
e Root mean square error (RMSE);
e The coefficient of determination (RZ) .

Mean absolute error. The sum of the absolute differences between the
simulated and actual values forms the average absolute error. This type of error
characterizes how incorrect the forecast values are. However, having an idea of the
magnitude of the numeric value, there is no knowledge of the overestimated or
insufficient performance of the algorithm. The formal equation corresponding to this
type of error is presented below:

1
MAE = E * Z Ytrue — Ypred )
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Root mean square error. This type of error is the square root of the average
square of the entire error. RMSE is a good measure of accuracy, but subject to
comparing the prediction errors of different model configurations for a particular
variable, rather than between variables, as the scale effect is apparent. This is a
measure of how well the regression line matches the data points. The formula for
calculating RMSE is as follows:

(7)

2
RMSE = 2\/ ?zl(ytrue _ypred)
n

The coefficient of determination. For quality control during training, the root-
mean-square error is effectively used, but this error does not give a concept of the
degree of correctness of the problem being solved. Therefore, to compare the
available machine learning algorithms, it is necessary to enter the coefficient of
determination. The coefficient of determination measures the proportion of variance
explained by the model in the total variance of the target variable. Provided that this
error is as close to one as possible, the developed model explains the data well, but if
it is close to zero, then the forecasts are comparable in quality to the constant
prediction. The coefficient of determination is calculated according to the following
formula:

_ ?=1(yt,rue - Ypred)z (8)

R? >
Z?=1(yltrue - Ypred)

3.2Target object of forecasting: oil flow rate or the percentage of achieving the
planned flow rate

In this section, | will demonstrate one of the problems that | encountered while
conducting research. The main task of the algorithm is to simulate the forecast of oil
production after the hydraulic fracturing process. At the first stage of the study, the
target production forecast represented the percentage of achieving the planned flow
rate after hydraulic fracturing. This value depends on the value of the planned flow
rate, which in turn is determined by a number of factors. The planned flow rate is a
dynamic value, which largely depends on the economic conditions of the oil and gas
market. The percentage of achievement of the planned flow rate can take different
values, the hydraulic fracturing is considered successful if the achievement value
exceeds one hundred percent. Predicting this value, the following error results were
obtained: MAE=13.6961, RMSE=16.8249. Table 5 shows the forecast of the
percentage of achieving the planned flow rate for ten random wells from the
considered data set.
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Table 5- Percentage of reaching the planned flow rate: output forecast / actual

values
Achievement of an increase in production rate,
Well # [%]
Actual values Forecast values
1 61,5 76,57
2 104 103,75
3 110,6 96,56
4 50 64,57
5 16 49,84
6 91,7 98,66
7 33,6 54,56
8 104,6 100,07
9 61,2 75,39
10 166,5 142,62

The increased amount of errors and the lack of knowledge of the actual flow
rate after hydraulic fracturing reveals that this target value does not provide the
desired quality of the result. The percentage of achieving the planned flow rate is not
a variable proportional to the factors discussed in the first chapter. Therefore,
choosing the correct forecast target value is the most important step in the simulation.
To improve the results, the oil flow rate (t/day) after hydraulic fracturing was selected
as the target value. The results of forecasting and comparative analysis are presented
in the next section.

3.3 Comparative analysis of the results of forecasting the oil flow rate from
various algorithms

This section is devoted to the comparative analysis of the results of various
algorithms for modeling the forecast of oil production after hydraulic fracturing. As
mentioned in section 3.1, the identification of the most appropriate algorithm for the
data sample under consideration will be based on the error metric.

The results of predicting the linear regression algorithm on random ten wells
are presented in Table 6. The visualization of the correlation of actual and predicted
values is shown in Figure 22.

Table 6- Predicting oil production after hydraulic fracturing: Linear Regression

Actual values,

[t/day] 11.01 5.3 10.2 14.7 16.3 14.3 15.8 13.5 6.6 6.9
Predicted

values, [t/day] | 13.818 | 10.069 | 11.849 | 10.164 | 7.654 | 10.949 | 6.844 | 12.009 | 12.623 | 11.954
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Figure 22- Output: Linear Regression

It should be noted that there is no excellent correlation between the forecast

and actual values of oil production, because there are significant deviations in the
predictions.

Next, consider the modifications of linear regression. The results of predicting
the LASSO regression algorithm on random ten wells are presented in Table 7. A
visualization of the correlation of actual and predicted values is shown in Figure 23.

Table 7- Predicting oil production after hydraulic fracturing: LASSO

Regression
Actual
values,
[t/day] 11.01 5.30 10.2 14.7 16.3 14.3 15.8 13.5 6.6 6.9
Predicted
values,
[t/day] 11.386 | 6.278 | 12.485 | 12.463 | 13.314 | 13.183 | 12.571 | 14.103 | 8.638 | 7.536
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Figure 23- Output: LASSO Regression

When using the LASSO model, the results of predicting the oil flow rate are
significantly improved. In Table 7, there are no high drifts of oil values in

comparison with the linear regression forecasts. The error is determined when the
actual oil values exceed the average value.

Similar results of the LASSO algorithm are observed when using Ridge
regression. Differences in the forecast flow rate in regression, the Ridge has reduced
values only in hundredths (Table 8).

Table 8- Predicting oil production after hydraulic fracturing: Ridge Regression

Actual
values,
[t/day] 11.01 | 5.30 10.2 14.7 16.3 14.3 15.8 13.5 6.6 6.9
Predicted
values,

[t/day] 11.006 | 6.091 | 12.414 | 12.14 | 13.068 | 13.009 | 12.073 | 14.025 | 8.519 | 7.466
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Figure 24- Output: Ridge Regression

Next, we will consider the results of applying the polynomial regression

algorithm. In the table below, there is a significant difference between the actual and
projected oil flow rates.

Table 9- Predicting oil production after hydraulic fracturing: Polynomial

regression
Actual
values,
[t/day] 6.8 3.90 5.8 9.4 17.4 12.7 13.8 6.7 12.5 6.2
Predicted
values,
[t/day] 15.829 | 9.631 | 11.956 | 10.962 | 7.791 | 11.093 | 6.045 | 12.041 | 12.002 | 11.998
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Figure 25- Output: Polynomial regression

According to Figure 24, we observe a less pronounced correlation directly in
the test data. Therefore, this forecast behavior is the cause of high final errors. A
similar situation is observed when applying the Random Forest algorithm. The
difference in the results of the forecast of the flow rate of training and test wells can
be observed in Figure 25.

Table 10- Predicting oil production after hydraulic fracturing: Random Forest

Regression
Actual
values,
[t/day] 11.01 5.30 10.2 14.7 16.3 14.3 15.8 13.5 6.6 6.9
Predicted
values,
[t/day] 15.212 | 12.32 | 12.163 | 12.229 | 10.079 | 9.892 9.31| 12.198 | 13.888 | 10.658

Let's move on to the final algorithm for predicting the oil flow rate after
hydraulic fracturing - the method of ensembling. From the visual interpretation of
Table 11, we can conclude that this algorithm is the most suitable for the data sample
under consideration.
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Table 11- Predicting oil production after hydraulic fracturing: Ensemble

method
Actual values,
[t/day] 6.2 12.00 | 10.2 7.7 3.5 14.3 4.8 9.3 4.8 16.8
Predicted
values,
[t/day] 7.362 | 11.94 | 10.44 | 8.208 | 6.045 | 12.86 | 6.985 | 9.465 | 7.877 | 14.912
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Figure 27- Ensemble method
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However, there are increased values of the forecast flow rate at low actual
values. This phenomenon is explained by the fact that in fact, low flow rates are the
"noise" of the sample under consideration. These "noises” relative to the average flow
rate are also significantly underestimated, which is the reason for the presence of
forecasting errors in the ensemble method.

Table 12- Comparative analysis of algorithms

Algorithm MAE | RMSE | R?
Linear
regression 4.039 | 4582 | 0.4928
LASSO
Regression 1.623 | 2.039 | 0.721
Ridge
Regression 1.546 1.98 0.757
Polynomial
regression 4.378 5.41 0.678
Random Forest
Regression 1.208 1.469 0.664
Ensemble
method 0.1475 | 1.5449 | 0.8591

The above table also proves that the method of model ensembles has
comparatively the best results. The coefficient of determination is as close as possible
to one (0.86) with the method of ensembling. Therefore, this algorithm is most
suitable for identifying the best candidate for hydraulic fracturing operations.

3.4 Forecasting production on potential candidates for hydraulic fracturing

The practical significance of this research work lies in the application of the
developed algorithm to potential wells. After conducting a comparative analysis and
selecting the most effective algorithm for solving the current problem, the next step is
to implement the process of selecting the best candidate for hydraulic fracturing. To
implement this task, a database of potential candidates (Appendix D) was formed
from the fund of current wells of the Uzen field. After filling in the database based on
previously established criteria, | applied the selected algorithm (an ensemble of
models) to this database. The results of predicting the oil flow rate for potential
candidates are shown in Figure 28:
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Figure 28- Production forecasting: potential candidates for hydraulic fracturing

The application of the chosen algorithm allows to determine the best
candidates for fracking operations among potential wells. For example, wells 11, 14,
18 are the best candidates, because their flow rate exceeds 20t/day. In comparison
with wells 28, 19 - the forecast production of which does not exceed 6 t / day. This
technology allows the selection of candidates for hydraulic fracturing operations to be
carried out in an accelerated format.

Checking the quality of the algorithm performance was the next stage of this
study. After the request was made, materials were received on the results of hydraulic
fracturing carried out in 2021 (January, February, March). Next, a database was
created from a sample of potential candidates, including wells with a recent hydraulic
fracturing operation. The next stage is a comparative analysis of the forecast flow rate
of the candidates considered earlier and the actual flow rates of the wells where the
hydraulic fracturing was carried out in 2021. The forecast results are shown in the
figure below: MAE=4.7; RMSE=5.902; R? = 0.5364. In comparison with the
previously studied sample of 100 wells, there is a hanging error value. It should also
be noted that the greatest deviation in the forecast values of the flow rate is observed
at the actual low oil flow rates (left part, Figure 29). The existing margin of error is
due to a number of factors:

e The projected target flow rate is the average flow rate for three months
after the hydraulic fracturing. Since hydraulic fracturing at the wells
under consideration was carried out relatively recently, the wells did not
reach their potential. For a qualitative analysis, the time factor is
necessary.

e The sample of candidate wells is a new and unknown data set for the
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algorithm. Therefore, the presence of a certain percentage of errors, for
the specified reason, cannot be avoided.

e The scale of the original sample is relatively small. Increasing the
number of wells that present historical data will improve the flow rate
prediction result and significantly reduce the error.
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Figure 29- Production forecasting: Hydraulic Fracturing Wells - 2021
3.5 Summary of Chapter 3

This chapter is devoted to a comparative analysis of the algorithms used and
explains the practical significance of this research work.

The identification of the most suitable and working algorithm for the data
sample under consideration was carried out on the basis of various types of errors.
The use of absolute mean error and mean square error does not provide the desired
quality of the result. First of all, because this metric shows only the magnitude, but
not the direction of the error. In addition, this metric on high-rate wells summarizes
the increased error, in comparison with low-rate wells. The use of the coefficient of
determination avoids the existing problems.

The ensemble model method is the most working algorithm applicable to the
current problem, due to the fact that it has a minimum error value. This algorithm was
used to identify the best candidates for hydraulic fracturing. And later, a comparative
analysis was carried out with the wells where the hydraulic fracturing was carried out

in 2021. This analysis proved the practical applicability of machine learning in the
field of hydraulic fracturing.
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4 ECONOMIC MODEL

Hydraulic fracturing is one of the most important discoveries in the field of
energy in the last fifty years. This technology has significantly increased the volume
of produced hydrocarbons. This growth has dramatically lowered energy prices,
strengthened energy security, and even reduced air pollution and carbon dioxide
emissions by replacing coal in power generation.

The result of the application of various technologies aimed at the extraction of
hydrocarbons depends on many factors, both geological, physical, and chemical, as
well as technological. As a rule, the more complex the process or technology of oil
production, the more qualitative and quantitative parameters and properties should be
taken into account when evaluating its effectiveness. One of the most complex and
expensive technologies aimed at increasing the degree of oil recovery is hydraulic
fracturing. To solve the problems of predicting hydraulic fracturing, to achieve
sufficiently high technical and economic indicators of the effectiveness of measures,
an objective assessment is necessary.

The economic justification of the proposed measures is necessary, because
only on the basis of economic indicators, such as the indicator of the annual
economic effect of hydraulic fracturing, the economic efficiency of capital
investments can be judged on the economic efficiency of the proposed measures. The
profitability index (Pl) characterizes the economic return on investment and
represents the ratio of the total net income to the total volume of capital investments,
its value is interpreted as follows: if Pl >1, the project is effective, if Pl <1 — the
project is not profitable.

= R, — OPEX )
NPV = ——— — — CAPEX
P 1+

where,
R- additional revenue from hydraulic fracturing;
OPEX- operating costs for additional oil production;
CAPEX — hydraulic fracturing costs;
I - discount rate.

In the framework of this study, the initial stage of the hydraulic fracturing
operation was considered - the selection of a candidate well. The cost-effectiveness
of hydraulic fracturing in this project is estimated using net discounted income. As
mentioned earlier, the cost-effectiveness of the project is affected by a number of
factors. Optimization of the fracture geometry based on its size and conductivity
belongs to the stage of hydraulic fracturing design (Appendix D). Of course, this
stage has a preferred impact on the economy of this technology, since it determines
the main operating costs. In this section, the oil gain from the hydraulic fracturing
operation is the main factor in the decision to conduct hydraulic fracturing.
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Therefore, the economic feasibility of the project is based on the volume of
additional production obtained by selecting the right candidate for hydraulic
fracturing.

Table 13- Comparative analysis: an economic model

P f
Additional production, Number of hydraulic Average ercen.tage °
Case# . . . economic success
1073 tons fracturing operations, units | growth, t/day
by PI>1
Case#l 137 72 12.2 88
Casett2 235 141 8.5 77

In the framework of this study, a comparative analysis of the economic
model of behavior with the use of the developed technology (Case#1, Table 13)
and without (Case#2, Table 13) was carried out. The use of this technology not
only allows to save time by performing accelerated analysis, but also significantly
increase the company's profit. In the first case, the use of machine learning in the
process of selecting wells for hydraulic fracturing allows not only to exclude
negative candidates, but also not to leave "overboard" effective wells. The second
option involves conducting hydraulic fracturing on positive and negative
candidates. Thus, the average increase in oil production by 3.7 t/day of the first
option exceeds the second one. At the same time, the planned indicators of
cumulative production are achieved with a smaller number of hydraulic fracturing
operations. Consequently, lower operating costs and higher profits due to
additional oil production ensure the economic profitability of the project (Figure
30).
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Figure 30- Economic justification of the project
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CONCLUSION

In conclusion, it should be noted that the main goal of the project was to
create a machine learning algorithm to identify the best candidate well for
hydraulic fracturing. Development without applying the hydraulic fracturing
methodology at the Uzen field is impossible. The question of improving and
optimizing the method under consideration by correctly determining the impact
candidate is relevant. Based on the literature review, a list of factors influencing
the effectiveness of this methodology for increasing oil recovery was established.

Summing up the results of the implemented project, the selected algorithm
model performs automated processing and analysis of a large data stream. Based
on the oil production forecast, the best candidates for hydraulic fracturing are
determined. The use of the developed technology allows not only to reduce
operating costs by screening out negative candidates, but also not to miss out on
the benefits of selecting the most efficient wells.

The weaknesses of this project are that in the framework of machine
learning, it is impossible to avoid the presence of errors due to the phenomenon of
"over fitting" data. However, this work has a deep potential for further research.
The developed model is primarily dynamic. Increasing the number of influencing
criteria will allow for a more detailed and in-depth research. In addition, changing
the scale of the data sample makes it possible to significantly reduce the error
value, thereby improving the forecast of oil production. As a result, the main task
was completed.
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LIST OF NOMENCLATURE
mD Millidarcy (units of permeability)
m  Meter (unit of length)
atm Atmosphere (unit of pressure)
P; Initial reservoir pressure
P. Current reservoir pressure
p  Pearson coefficient
o  Standard deviation

Bn Coefficient of a linear equation
A Regularization parameter
2D Two-dimensional space

R? Coefficient of determination

R Additional revenue from hydraulic fracturing

i Discount rate

COV(X,Y) Covariance between two variables
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LIST OF ABBREVIATIONS

HF Hydraulic Fracturing

Pl Productivity Index

WC Water Cut

IW Injection Well

PW Production Well

TBD Information system «Geographically distributed data bank»
std  Standard deviation

min Minimum sample value

max Maximum sample value

LASSO Least Absolute Shrinkage and Selection Operator
SSE  Sum of squared errors

PCA Principal component analysis

MAE Mean absolute error

RMSE Root mean square error

NPV  Net present value
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APPENDICES

Appendix A. Database of training and test wells

New Net pay oil Achievement Flow
planned . . | Water Permeability, | Injection | Producing | of anincrease rate
X thickness, | P_c/P_i rate, X ) WC_group
fracturing m cut, % t/d mD well, m well, m in production after
interval rate, % HF, t/d
Medium-
0 16 1.17068 60 1.68 2.4 230 525 61.5 6.2 watered
1 16.9 1.07231 39 5.12 5.12 355 215 104 12 Low watered
Medium-
0 13 1.08215 57 5.41 8.43 240 184 110.6 10.2 watered
Medium-
0 11 1.13519 60 1.35 6.8 511 316 50 7.7 watered
Medium-
1 8.5 0.73553 | 56.13 3.31 4.75 391 259 16 3.5 watered
0 14.5 1.20086 22.5 3.4 1.6 367 201 126 16.2 Low watered
Medium-
0 15 1.17272 77.5 1.14 6.25 265 214 157 14.9 watered
0 19.6 1.23839 | 21.33 5.91 6.25 218 279 102 14.4 Low watered
Medium-
0 8 1.05076 41.5 1.55 9.72 549 445 66 8.3 watered
Medium-
0 12.6 0.96632 63 4.04 8.13 245 200 29 4.9 watered
Medium-
1 24 0.86312 | 76.09 3.73 7.64 1079 246 120 12.5 watered
0 128 1.2196 40 2.52 18 521 185 99 13.5 Highly-watered
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Continuation of Appendix A. Database of training and test wells

New Net pay oil Achievement Flow
planned . . | Water Permeability, | Injection | Producing | of anincrease rate
X thickness, | P_c/P_i rate, . ) WC_group
fracturing m cut, % t/d mD well, m well, m in production after
interval rate, % HF, t/d
Medium-
13.3 1.0789 60 3.36 9.62 181 177 104 10.5 watered
16 1.18052 32 8.56 12.6 197 222 41.7 14.9 Low watered
12.7 0.89127 15 85 17.1 1178 201 95 10.2 Low watered
Medium-
0 8.4 1.08828 50 2.1 11.3 449 127 77 7.8 watered
Medium-
0 9 1.03199 44 0.94 4.65 399 186 160 15.8 watered
1 14.2 1.37727 | 90.32 1.06 6.3 305 295 66 6.1 Highly-watered
0 12 0.94343 38 5.2 19.5 307 189 172.7 19.8 Low watered
Medium-
0 10 1.32283 60 1.01 7 390 264 68 7.6 watered
0 10 0.98377 89.6 0.44 4.45 389 168 103.3 7.632 | Highly-watered
1 10.1 1.13133 | 98.57 0.23 11.5 314 189 152.6 10.7 Highly-watered
Medium-
1 25.4 1.01328 | 53.45 1.56 8.84 152 172 126 13.8 watered
0 13.9 0.85374 26 1.86 3.99 437 246 199 17.3 Low watered
Medium-
1 20.6 1.32283 59.2 2.4 6.25 333 276 65 8.7 watered
0 11 1.0789 20 2.01 9.54 509 238 22 3.9 Low watered
Medium-
0 17.8 1.03199 66 1.43 14.1 774 193 77 9.3 watered
0 11 0.8725 80.94 1.28 12 555 228 122 14.7 Highly-watered
0 9.6 1.0789 85.63 1.81 6.833333 1194 315 148 16.3 Highly-watered
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Continuation of Appendix A. Database of training and test wells

New Net pay oil Achievement Flow
planned . . | Water Permeability, | Injection | Producing | of an increase rate
X thickness, | P_c/P_i rate, . ) WC_group
fracturing m cut, % t/d mD well, m well, m in production after
interval rate, % HF, t/d
0 14 1.03199 94 0.5 5.15 470 168 70 8.2 Highly-watered
1 15.9 1.14363 20 2.01 13.1 428 285 102 11.2 Low watered
0 18 1.03199 40 4.03 6.28 195 94 75 12.4 Highly-watered
Medium-
1 14.5 0.93817 | 66.65 0.84 8 189 119 94 11.5 watered
Medium-
0 11 0.99447 69.5 1.28 5 221 157 143 17.1 watered
0 10.6 0.96632 36 2.68 17.2 476 237 21 3.9 Low watered
0 11 1.01328 91.7 0.28 7.64 443 207 173.4 12.6 Highly-watered
1 13 1.08215 91.8 3.72 7.08 396 205 100.9 10.8 Highly-watered
Medium-
0 9.1 1.03199 54 3.86 11.9 571 279 137.9 17.6 watered
Medium-
0 20 0.84436 | 68.07 2.68 14.7 479 194 120.1 14.6 watered
Medium-
0 10.5 1.24777 | 51.45 7.33 9.95 409 193 60.7 12.7 watered
0 6 1.06014 2 8.22 9.37 287 191 116.7 14.9 Low watered
0 17.2 1.03762 24 6.38 11.2 399 217 129.1 15.1 Low watered
Medium-
1 10.3 1.00385 43 5.26 9.92 569 382 41.5 5.3 watered
Medium-
1 18.6 1.1305 74.08 3.59 5.84 449 194 107.8 13.5 watered
0 16.5 0.97476 | 90.48 0.08 7.1 581 278 94.3 17.4 Highly-watered
Medium-
0 19.8 1.03199 73 2.27 8.61 456 151 124.5 9.4 watered
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Continuation of Appendix A. Database of training and test wells

New Net pay oil . o . Achie.vement Flow
planned . . | Water Permeability, | Injection | Producing | of anincrease rate
fracturing thlcll(:ess, P_c/P_i cut, % rta/tj, mD well, m well, m in production after WC_group
interval rate, % HF, t/d

0 11 1.0789 38 3.64 13.3 392 193 87.5 10.1 Low watered

0 10.1 1.00291 | 80.87 0.32 12.8 622 540 134.3 12 Highly-watered

0 29.5 0.89127 40 0.5 12.5 399 204 69.2 9.9 Highly-watered
Medium-

0 6 1.10423 45 2.31 10.8 283 243 67.8 8.1 watered

1 19.5 1.14457 98 0.94 24.6 486 260 166.4 19 Highly-watered
Medium-

0 12.1 1.17272 71 1.46 6.99 599 514 87.7 10 watered

1 7.7 1.15395 40 35.7 15.5 639 197 59.6 6.6 Highly-watered

0 12.6 0.84436 30 1.76 3 474 379 30.5 3.9 Low watered

0 20.1 1.18052 | 85.71 1.08 7.24 243 273 120.8 11.5 Highly-watered

0 14 1.32809 37 5.29 4.4 339 134 92.3 10 Low watered

1 16.5 1.00344 40 5.03 17 536 250 104.4 17.1 Highly-watered

0 17.6 1.2789 21.7 9.85 13.4 333 255 111 16.7 Low watered

1 14.9 0.98377 34 2.21 11.7 501 881 124 15.8 Low watered

0 11 0.9513 85.71 1.44 32 280 210 89 11.01 | Highly-watered

0 5.9 0.98377 | 22.96 6.46 10.3 296 208 135 15.3 Low watered

0 9 1.08215 | 96.55 0.06 13.3 157 105 67 6.5 Highly-watered
Medium-

0 20 1.13133 | 60.33 0.33 22.5 544 193 113 15.5 watered
Medium-

1 13.1 1.13133 55 3.78 6.14 208 326 164 16.7 watered
Medium-

1 11 1.18052 64.69 1.48 3.3 310 198 113 11.1 watered
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Continuation of Appendix A. Database of training and test wells

New Net pay oil Achievement Flow
planned . . | Water Permeability, | Injection | Producing | of an increase rate
X thickness, | P_c/P_i rate, . ) WC_group
fracturing m cut, % t/d mD well, m well, m in production after
interval rate, % HF, t/d
Medium-
1 11.3 1.25922 | 66.87 3.61 6.77 428 215 60 10.5 watered
Medium-
0 19.4 1.06247 59.5 0.68 9.18 258 685 56 4.96 watered
0 15.9 0.93458 40 4.03 12.5 443 505 75 10.1 Highly-watered
1 15.7 1.03296 88 0.3 8.61 396 196 133 13.5 Highly-watered
Medium-
0 11 0.82637 | 70.29 0.5 4.25 301 271 91 11.9 watered
Medium-
0 16.1 1.04279 67.7 0.81 8 536 246 47 5.8 watered
0 17.5 1.18052 92.6 0.68 5.71 224 339 143 13.9 Highly-watered
Medium-
171 1.16085 | 56.57 1.82 9.98 344 179 84.3 9.9 watered
8 1.03296 100 0 15 607 252 119.5 12.6 Highly-watered
16.2 1.08215 86 1.29 10.8 455 250 54.5 6.9 Highly-watered
Medium-
1 13.7 0.88539 | 46.27 0.9 13.3 404 381 115.6 14.3 watered
Medium-
18 0.86572 | 68.89 3.92 15.6 367 220 114.8 14.5 watered
11 1.18052 100 0 7.4 416 304 74.8 8.3 Highly-watered
12.7 1.23955 81 0.32 5.5 418 300 154.6 17.9 Highly-watered
Medium-
0 20.8 1.33792 | 60.36 2 10 374 586 45.4 6.3 watered
Medium-
1 10.8 1.03296 52 2.42 9.7 570 204 56 6.7 watered
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Continuation of Appendix A. Database of training and test wells

New Net pay oil Achievement Flow
planned . . | Water Permeability, | Injection | Producing | of an increase rate
X thickness, | P_c/P_i rate, . ) WC_group
fracturing m cut, % t/d mD well, m well, m in production after
interval rate, % HF, t/d
1 8.3 0.9149 97 0.23 12.5 359 301 127 13.7 Highly-watered
Medium-
1 7.5 1.09198 44 0.47 8.29 224 275 77.8 9.4 watered
Medium-
19.5 0.79685 71 1.22 11.4 450 349 25.8 6.8 watered
1 12 1.1215 100 0 9.7 496 199 97.8 11.3 Highly-watered
Medium-
0 10.2 1.18052 53.5 7.41 9 265 135 113.1 17.2 watered
Medium-
9.8 1.16085 42 3.89 16.2 398 274 89 9.9 watered
12.5 1.03296 38 2.6 8.8 440 632 131.6 12.1 Low watered
Medium-
0 19.9 1.67241 70 4.28 33.8 526 229 151.1 18.8 watered
Medium-
8 1.03296 44 1.98 9.68 248 211 119.9 14 watered
23 0.90507 10 14.4 11.1 408 228 126.1 19.5 Low watered
Medium-
1 13.8 0.99361 65.2 1.75 15.1 330 287 97.8 9.4 watered
Medium-
0 16.2 0.96409 61 7.2 10 318 191 85.1 12 watered
Medium-
1 11.5 1.03296 63.7 1.52 10.6 606 199 71.8 8.1 watered
Medium-
1 19.5 0.90507 65 4.4 14.1 284 307 20.4 5.7 watered
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Appendix B. Data: collection, preparation, quality check, analysis
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Figure B.1- Data sampling: cclassification of wells by water cut parameter
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Figure B.2- Data sampling: Average oil flow rate after hydraulic fracturing,
[t/d]
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Continuation of Appendix B. Data: collection, preparation, quality check,
analysis
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Figure B.3- 2020 HF: Average oil flow rate after hydraulic fracturing, [t/d]
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Figure B.4- 2019 HF: Average oil flow rate after hydraulic fracturing, [t/d]
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Figure B.5- 2018 HF: Average oil flow rate after hydraulic fracturing, [t/d]
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WC_group

Continuation of Appendix B. Data: collection, preparation, quality check,
analysis
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Figure B.6- 2020/19/18 HF: cclassification of wells by water cut parameter
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Figure B.7- 2020: Production statistics by WC group
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Continuation of Appendix B. Data: collection, preparation, quality check,
analysis

Boxplot grouped by WC_group
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Figure B.8- 2019: Production statistics by WC group
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Figure B.9- 2018: Production statistics by WC group
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Appendix C. Machine learning: output data
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Figure C.1- Determination of the elbow point
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Figure C.2- Influence of parameters on well performance forecasting
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Continuation of Appendix C. Machine learning: output data

New planned fracturing intervalin  Net pay thickness P_c/P_| Watercut Oil rate Permeabllity Injection well Producing well Labels
° 0 150 1170684 6000 1863 240 230 525 2
1 1 168 1072307 ®0 512 512 355 215
2 0 130 1082145 5T00 541 243 240 18¢ o
3 0 10 1135191 6000 135 680 511 316
4 1 85 0735520 %13 a3 475 381 256 1
35 o 90 1082145 7158 2% 535 261 182 0
% 0 120 1032556 980 42 1250 270 236
97 0 150 0834578 442 149 704 206 14 0
58 o 112 0883763 2085 204 11.90 220 414
ES 1 121 0834579 941 018 1400 397 an 1

Figure C.3- Example of K-Mean well classification

72



Appendix D. Forecasting production on potential candidates for hydraulic
fracturing

Table D.1- Database of potential hydraulic fracturing candidates

New
acturing | thickness | PSP | "cur' | rate | Permeabiiy | RN | PIOUEENG

interval

1 14 0.99 86 0.4 13 674 236
1 12.7 1.05 79 0.3 5.2 374 204
1 9.2 0.99 81 1.3 12.1 283 199
1 16.2 0.85 77 2.1 6 166 222
0 13 1.18 58 2.9 8.9 164 195
0 12.9 1.14 62 3.5 11.3 231 415
0 15.8 1.01 74 1.9 7.2 321 74
0 18.5 1.16 76 2.6 6.6 172 454
1 5.5 1.06 62 2.7 115 297 233
0 12.7 1.13 62 4.4 19.7 514 288
0 10 0.88 64 3 8.9 171 472
1 8.7 1.04 95 0.8 12.6 182 224
0 9 1.09 92 1.9 17.6 328 145
1 13.9 0.81 97 0.5 14.5 414 273
0 8.1 1.31 75 1.8 115 387 181
1 6.7 1.28 76 2.2 12 251 283
0 10 1.08 83 1.8 4.9 80 222
0 26.3 0.93 75 0.8 3.2 182 373
1 13.1 1.46 61 3 8 353 333
1 20.1 0.94 86 2.3 10.2 252 231
0 10.4 0.81 54 1.8 6.5 263 208
0 8.3 0.93 95 1.2 13.7 374 162
1 32 1.13 78 3.7 11 819 282
0 20.7 1.11 54 3.7 9.6 248 318
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Continuation of Appendix D. Forecasting production on potential candidates for
hydraulic fracturing

Flow rate after HF | |

25 50 75 100 125 150 75 200 s

Figure D.1- Comparison of the average forecasted (red line) and actual (green
line) oil production rates
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Appendix E. Economic justification
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Figure E.1- Dependence of the cost of hydraulic fracturing on the fracture
length
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Figure E.2- Discounted return of investments
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